Skip to main content
Log in

Two-line atomic fluorescence thermometry in the saturation regime

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Two-line atomic fluorescence (TLAF) thermometry is based on the consecutive excitation of two nearby atomic ground states to a common excited state, and ratioing the ensuing fluorescence yields. TLAF is one of the few methods that hold promise for thermometry in sooting environments. We extend the method to the regime of fully saturated excitation and introduce a new seeding system that also allows the method to be used in lean flames. We compare results for saturated TLAF to those of linear TLAF and to thermocouple measurements, and find good correspondence. The saturated version introduced here maximizes fluorescence yields while simultaneously suppressing the dependence on excitation laser irradiance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J. Lahaye, G. Prado, Soot in Combustion Systems and Its Toxic Properties. in Tech. rep., Center for Research on the Physico-Chemistry of Solid Surfaces CNRS (1983)

  2. K. Kohse, J. Jeffries, Applied Combustion Diagnostics (Taylor and Francis, London, 2002)

    Google Scholar 

  3. J. Engström, J. Nygren, M. Aldén, C. Kaminski, Opt. Lett. 25(19), 1469 (2000)

    Article  ADS  Google Scholar 

  4. J. Nygren, J. Engström, J. Walewski, C. Kaminski, M. Aldén, Meas. Sci. Technol. 12, 1294 (2001)

    Article  ADS  Google Scholar 

  5. P. Medwell, Q. Chan, P. Kalt, Z. Alwahabi, B. Dally, G. Nathan, Appl. Opt. 48(6), 1237 (2009)

    Article  ADS  Google Scholar 

  6. R. Lucht, N. Laurendeau, D. Sweeney, Appl. Opt. 21(20), 3729 (1982)

    Article  ADS  Google Scholar 

  7. M. Tamura, J. Luque, J. Harrington, P. Berg, G. Smith, J. Jeffries, D. Crosley, Appl. Phys. B 66(4), 503 (1998)

    Article  ADS  Google Scholar 

  8. J. Hult, I. Burns, C. Kaminski, Proc. Combust. Inst. 30(1), 1535 (2005)

    Article  Google Scholar 

  9. I. Burns, N. Lamoureux, C. Kaminski, J. Hult, P. Desgroux, Appl. Phys. B 93, 907 (2008)

    Article  ADS  Google Scholar 

  10. J. Engstrom, Development of a 2D Temperature Measurement Technique for Combustion Diagnostics Using 2-line Atomic Fluorescence. Ph.D. thesis, Lund University (2001)

  11. Q. Chan, P. Medwell, P. Kalt, Z. Alwahabi, B. Dally, G. Nathan, Appl. Opt. 49(8), 1257 (2010)

    Article  ADS  Google Scholar 

  12. P. Medwell, Q. Chan, B. Dally, Z. Alwahabi, S. Mahmoud, G. Metha, G. Nathan, Appl. Phys. B 107, 665 (2012)

    Article  ADS  Google Scholar 

  13. Q. Chan, P. Medwell, Z. Alwahabi, B. Dally, G. Nathan, Appl. Phys. B 104, 189 (2011)

    Article  ADS  Google Scholar 

  14. G. Zizak, J. Bradshaw, J. Winefordner, Appl. Opt. 19(21), 3631 (1980)

    Article  ADS  Google Scholar 

  15. L.C. Allen, J.H. Eberly, Optical Resonance and Two-Level Atoms (Dover Publications, New York, 1975)

    Google Scholar 

  16. R. Loudon, The Quantum Theory of Light (OUP, Oxford, 2000)

    MATH  Google Scholar 

  17. J.D. Lambert, Vibrational and Rotational Relaxation in Gases (Clarendon Press, Oxford, 1977)

    Google Scholar 

  18. A.E. Siegman, Lasers (University Science Books, Mill Valley, 1986)

    Google Scholar 

  19. J. Dec, J. Keller, in Symposium (International) on Combustion, vol. 21 (Elsevier, 1988), vol. 21, pp. 1737–1745

  20. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods 9(7), 671 (2012)

    Article  Google Scholar 

  21. C.K. Law, Combustion Physics (CUP, Cambridge, 2006)

    Book  Google Scholar 

  22. W. Balfour, Mol. Phys. 89(1), 13 (1996)

    Article  ADS  Google Scholar 

  23. A. Kramida, Y. Ralchenko, J. Reader, NIST ASD Team. in NIST Atomic Spectra Database (version 5.1), (2013). http://physics.nist.gov/asd

Download references

Acknowledgments

The work of Y. Shoshin is supported by the Dutch Technology Foundation STW (Project 11616), which is part of the Netherlands Organization for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. J. Dam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manteghi, A., Shoshin, Y., Dam, N.J. et al. Two-line atomic fluorescence thermometry in the saturation regime. Appl. Phys. B 118, 281–293 (2015). https://doi.org/10.1007/s00340-014-5984-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5984-x

Keywords

Navigation