Skip to main content
Log in

Plasmonic characteristics in nanoscale graphene resonator-coupled waveguides

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, we numerically and theoretically investigate the propagation of surface plasmon polaritons in a graphene-based resonator-coupled waveguide system, consisting of a monolayer graphene ribbon coupling to two graphene sheets. The resonance wavelength of this system can be easily tuned by adjusting the chemical potential and the width of the graphene ribbon. Both resonance bandwidth and spectral transmission characteristics of the structure strongly depend on the coupling distance and overlap length between the graphene ribbon and graphene sheets. The structural symmetry is found to be another essential parameter. The presented results may pave the way toward the dynamic control of light propagation in graphene-based structures and the realization of tunable graphene-based optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  2. S.I. Bozhevolnyi, V.S. Volkov, E. Devaux, J.Y. Laluet, T.W. Ebbesen, Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006)

    Article  ADS  Google Scholar 

  3. H. Lu, X. Liu, L. Wang, Y. Gong, D. Mao, Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt. Express 19, 2910 (2011)

    Article  ADS  Google Scholar 

  4. M. Ren, B. Jia, J.Y. Ou, E. Plum, J. Zhang, K.F. MacDonald, A.E. Nikolaenko, J. Xu, M. Gu, N.I. Zheludev, Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv. Mater. 23, 5540–5544 (2011)

    Article  Google Scholar 

  5. F. Bleckmann, E. Maibach, S. Cordes, T.E. Umbach, K. Meerholz, S. Linden, Photochromic switching of fano resonances in metallic photonic crystal slabs. Adv. Optical Mater. (2014). doi:10.1002/adom.201400187

    Google Scholar 

  6. Q. Gan, Y. Ding, F. Bartoli, ‘Rainbow’ trapping and releasing at telecommunication wavelengths. Phys. Rev. Lett. 102, 056801 (2009)

    Article  ADS  Google Scholar 

  7. H. Lu, X. Liu, Y. Gong, D. Mao, L. Wang, Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities. Opt. Express 19, 12885–12890 (2011)

    Article  ADS  Google Scholar 

  8. S. Dai, D. Zhao, Q. Li, M. Qiu, Double-sided polarization-independent plasmonic absorber at near-infrared region. Opt. Express 21, 13125–13133 (2013)

    Article  ADS  Google Scholar 

  9. W. Zhang, Q. Li, M. Qiu, A plasmon ruler based on nanoscale photothermal effect. Opt. Express 21, 172–181 (2013)

    Article  ADS  Google Scholar 

  10. H. Lu, X. Liu, D. Mao, Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems. Phys. Rev. A 85, 053803 (2012)

    Article  ADS  Google Scholar 

  11. I.D. Leon, P. Berini, Amplification of long-range surface plasmons by a dipolar gain medium. Nat. Photonics 4, 382–387 (2010)

    Article  ADS  Google Scholar 

  12. H. Lu, X. Liu, G. Wang, D. Mao, Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency. Nanotechnology 23, 444003 (2012)

    Article  Google Scholar 

  13. Y. Gong, X. Liu, L. Wang, High-channel-count plasmonic filter with the metal–insulator–metal fibonacci-sequence gratings. Opt. Lett. 35, 285–287 (2010)

    Article  ADS  Google Scholar 

  14. H. Lu, X. Liu, D. Mao, L. Wang, Y. Gong, Tunable band-pass plasmonic waveguide filters with nanodisk resonators. Opt. Express 18, 17922–17927 (2010)

    Article  ADS  Google Scholar 

  15. Y. Zhang, N. Stokes, B. Jia, S. Fan, M. Gu, Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss. Sci. Rep. 4, 4939 (2013)

    Google Scholar 

  16. H. Lu, X. Liu, D. Mao, G. Wang, Plasmonic nanosensor based on fano resonance in waveguide-coupled resonators. Opt. Lett. 37, 3780–3782 (2012)

    Article  ADS  Google Scholar 

  17. A. Geim, K. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  ADS  Google Scholar 

  18. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  19. F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010)

    Article  ADS  Google Scholar 

  20. Q. Bao, H. Zhang, B. Wang, Z. Ni, C.H.Y.X. Lim, Y. Wang, D.Y. Tang, K.P. Loh, Broadband graphene polarizer. Nat. Photonics 5, 411 (2011)

    Article  ADS  Google Scholar 

  21. A. Vakil, N. Engheta, Transformation optics using graphene. Science 332, 1291–1294 (2011)

    Article  ADS  Google Scholar 

  22. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F.H.L. Koppens, F.J.G. de Abajo, Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 6, 431–440 (2012)

    Article  Google Scholar 

  23. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. Liang, A. Zettl, Y.R. Shen, F. Wang, Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630–634 (2011)

    Article  ADS  Google Scholar 

  24. H. Chu, C. Gan, Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays. Appl. Phys. Lett. 102, 231107 (2013)

    Article  ADS  Google Scholar 

  25. S. Thongrattanasiri, F.H.L. Koppens, F. Javier Garcı´a de Abajo, “Complete optical absorption in periodically patterned graphene”. Phys. Rev. Lett. 108, 047401 (2012)

    Article  ADS  Google Scholar 

  26. Z. Fei, G. Andreev, W. Bao, L.M. Zhang, A.S. McLeod, C. Wang, M.K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M.M. Fogler, M.J. Tauber, A.H. Castro-Neto, C.N. Lau, F. Keilmann, D.N. Basov, Infrared nanoscopy of dirac plasmons at the graphene-SiO2 interface. Nano Lett. 11, 4701–4705 (2011)

    Article  ADS  Google Scholar 

  27. V.W. Brar, M. Jang, M. Sherrott, J.J. Lopez, H.A. Atwater, Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Lett. 13, 2541–2547 (2013)

    Article  ADS  Google Scholar 

  28. F.H.L. Koppens, D.E. Chang, F.J. García de Abajo, Graphene plasmonics: A platform for strong light-matter interactions. Nano Lett. 11, 3370–3377 (2011)

    Article  Google Scholar 

  29. K.F. Mak, M.Y. Sfeir, Y. Wu, C.H. Lui, J.A. Misewich, T.F. Heinz, Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101, 196405 (2008)

    Article  ADS  Google Scholar 

  30. A.N. Grigorenko, M. Polini, K.S. Novoselov, Graphene plasmonics. Nat. Photonics 6, 749–758 (2012)

    Article  ADS  Google Scholar 

  31. B. Wang, X. Zhang, F.J. Garcı´a-Vidal, X. Yuan, J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays”. Phys. Rev. Lett. 109, 073901 (2012)

    Article  ADS  Google Scholar 

  32. W. Gao, J. Shu, C. Qiu, Q. Xu, Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano 6, 7806–7813 (2012)

    Article  Google Scholar 

  33. B. Wang, X. Zhang, X. Yuan, J. Teng, Optical coupling of surface plasmons between graphene sheets. Appl. Phys. Lett. 100, 131111 (2012)

    Article  ADS  Google Scholar 

  34. G. Wang, X.M. Liu, H. Lu, C. Zeng, Graphene plasmonic lens for manipulating energy flow. Sci. Rep. 4, 4073 (2014)

    ADS  Google Scholar 

  35. C. Gan, H. Chu, E. Li, Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies. Phys. Rev. B 85, 125431 (2012)

    Article  ADS  Google Scholar 

  36. P. Liu, W. Cai, L. Wang, X. Zhang, J. Xu, Tunable terahertz optical antennas based on graphene ring structures. Appl. Phys. Lett. 100, 153111 (2012)

    Article  ADS  Google Scholar 

  37. P.Y. Chen, A. Alù, Atomically thin surface cloak using graphene monolayers. ACS Nano 5, 5855–5863 (2011)

    Article  Google Scholar 

  38. C. Gan, Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection. Appl. Phys. Lett. 101, 111609 (2012)

    Article  ADS  Google Scholar 

  39. J. Garcia-Pomar, A. Nikitin, L. Martin-Moreno, Scattering of graphene plasmons by defects in the graphene sheet. ACS Nano 7, 4988 (2013)

    Article  Google Scholar 

  40. A.Y. Nikitin, T. Low, L. Martin-Moreno, Anomalous reflection phase of graphene plasmons and its influence on resonators. Phys. Rev. B 90, 041407 (2014)

    Article  ADS  Google Scholar 

  41. J. Chen, M. Nesterov, A. Nikitin, S. Thongrattanasiri, P. Alonso-Gonz´alez, T.M. Slipchenko, M. Ostler, T. Seyller, I. Crassee, F. Koppens, L. Martin-Moreno, J. Garcia de Abajo, A.B. Kuzmenko, R. Hillenbrand, “Strong plasmon reflection at nanometer-size gaps in monolayer graphene on SiC”. Nano Lett. 13, 6210 (2013)

    Article  ADS  Google Scholar 

  42. AYu. Nikitin, F. Guinea, F.J. Garc´ıa-Vidal, L. Mart´ın-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons”. Phys. Rev. B 84, 161407(R) (2011)

    Article  ADS  Google Scholar 

  43. F.J. Owens, Electronic and magnetic properties of armchair and zigzag graphene nanoribbons. J. Chem. Phys. 128, 194701 (2008)

    Article  ADS  Google Scholar 

  44. J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, “Photonic crystals: Molding the flow of light,” 2nd ed. Chap. 10, (Princeton Univ. Press, Princeton, 2008)

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grants A040407 and F050210. The author also acknowledges the support from Australia Research Council (ARC) Centre from Ultrahigh-bandwidth Devices for Optical Systems (CUDOS) (project number CE110001018). The author acknowledges the assistance and helpful discussions from Dr. Guoxi Wang, Dr. Wenfu Zhang and Mr. Chao Zeng from Xi’an Institute of Optics and Precision Mechanics as well as Dr. Yinan Zhang and Dr. Philipp Reineck at Swinburne University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H. Plasmonic characteristics in nanoscale graphene resonator-coupled waveguides. Appl. Phys. B 118, 61–67 (2015). https://doi.org/10.1007/s00340-014-5954-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5954-3

Keywords

Navigation