Skip to main content
Log in

On-line wavelength calibration of pulsed laser for CO2 DIAL sensing

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Accurate on-line wavelength calibration is a crucial procedure for sensing atmospheric CO2 using the DIAL technique. Drastic fluctuations in the intensity of a pulsed laser pose a great challenge for accurate on-line wavelength determination and stabilization, resulting in CO2 retrievals lacking the desired accuracy for global climate change and carbon cycle research. To tackle this problem, a two-stage wavelength calibration method based on Voigt fitting was proposed in this work. Simulation analysis demonstrated that the proposed method is superior to the conventional method and provides wavelength calibration results with an accuracy of 0.1 pm when the noise level does not exceed than 5 %. This conclusion was confirmed through experiments with real signals. Furthermore, simulation analysis revealed that the proposed method could yield results with an accuracy of 0.1 pm by increasing the number of sample points, even for signals with noise levels of up to 20 %. This is a promising feature that could facilitate the development of DIAL systems without gas cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ciais, P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell, A. Chhabra, R. DeFries, J. Galloway, M. Heimann, C. Jones, C. Le Quéré, R.B. Myneni, S. Piao and P. Thornton, Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013

  2. S. Fan, M. Gloor, J. Mahlman, S. Pacala, J. Sarmiento, T. Takahashi, P. Tans, A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282, 442–446 (1998)

    Article  ADS  Google Scholar 

  3. G. R. Allan, H. Riris, J. B. Abshire, X. Sun, E. Wilson, J. F. Burris, and M. A. Krainak, Laser Sounder for Active Remote Sensing Measurements of CO2 Concentrations, in Aerospace Conference, 2008 IEEE(IEEE2008), pp. 1–7

  4. S. Houweling, W. Hartmann, I. Aben, H. Schrijver, J. Skidmore, G.J. Roelofs, F.M. Breon, Evidence of systematic errors in SCIAMACHY-observed CO2 due to aerosols. Atmos. Chem. Phys. Discuss. 5, 3313–3340 (2005)

    Article  ADS  Google Scholar 

  5. R. Engelen, G. Stephens, Information content of infrared satellite sounding measurements with respect to CO2. J. Appl. Meteorol. 43, 373–378 (2004)

    Article  ADS  Google Scholar 

  6. J.B. Abshire, H. Riris, G.R. Allan, C.J. Weaver, J. Mao, X. Sun, W.E. Hasselbrack, S.R. Kawa, S. Biraud, Pulsed airborne lidar measurements of atmospheric CO2 column absorption. Tellus. B. 62, 770–783 (2010)

    Article  ADS  Google Scholar 

  7. G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, S. Houweling, Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis. Appl. Phys. B. 90, 593–608 (2008)

    Article  ADS  Google Scholar 

  8. S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, M. Nakajima, Performance improvement and analysis of a 1.6 μm continuous-wave modulation laser absorption spectrometer system for CO2 sensing. Appl. Opt. 50, 1560–1569 (2011)

    Article  ADS  Google Scholar 

  9. B.B. Stephens, K.R. Gurney, P.P. Tans, C. Sweeney, W. Peters, L. Bruhwiler, P. Ciais, M. Ramonet, P. Bousquet, T. Nakazawa, Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science 316, 1732–1735 (2007)

    Article  ADS  Google Scholar 

  10. F. Gibert, P.H. Flamant, D. Bruneau, C. Loth, Two-micrometer heterodyne differential absorption lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer. Appl. Opt. 45, 4448–4458 (2006)

    Article  ADS  Google Scholar 

  11. S. Kawa, J. Mao, J. Abshire, G. Collatz, X. Sun, C. Weaver, Simulation studies for a space-based CO2 lidar mission. Tellus. B. 62, 759–769 (2010)

    Article  ADS  Google Scholar 

  12. Q. Yao, D. Liu, J. Li, Z. Lin, Z. Lou, S. Shi, H. Maezawa, and S. Paine, Atmospheric profiling synthetic observation system at THz, 85620T-85620T 2012

  13. D. Lu, W. Pan, Atmospheric Profiling Synthetic Observation System (APSOS), presented at the International Radiation Symposium 2012 (Dahlem Cube, Berlin, 2012), pp. 06–10

    Google Scholar 

  14. D. Sakaizawa, S. Kawakami, M. Nakajima, Y. Sawa, and H. Matsueda, Ground-based demonstration of a CO2 remote sensor using a 1.57 μm differential laser absorption spectrometer with direct detection, J. Appl. Remote Sens. 4, 043548-043548-043517 (2010)

  15. G.J. Koch, J.Y. Beyon, F. Gibert, B.W. Barnes, S. Ismail, M. Petros, P.J. Petzar, J. Yu, E.A. Modlin, K.J. Davis, Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements. Appl. Opt. 47, 944–956 (2008)

    Article  ADS  Google Scholar 

  16. A. Amediek, A. Fix, M. Wirth, G. Ehret, Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide. Appl. Phys. B. 92, 295–302 (2008)

    Article  ADS  Google Scholar 

  17. G.J. Koch, M. Petros, J.R. Yu, U.N. Singh, Precise wavelength control of a single-frequency pulsed Ho : Tm : YLF laser. Appl. Opt. 41, 1718–1721 (2002)

    Article  ADS  Google Scholar 

  18. E.V. Browell, S. Ismail, S.T. Shipley, Ultraviolet DIAL measurements of O3 profiles in regions of spatially inhomogeneous aerosols. Appl. Opt. 24, 2827–2836 (1985)

    Article  ADS  Google Scholar 

  19. W.B. Grant, M.A. Fenn, E.V. Browell, T.J. McGee, U.N. Singh, M.R. Gross, I.S. McDermid, L. Froidevaux, P.H. Wang, Correlative stratospheric ozone measurements with the airborne UV DIAL system during TOTE/VOTE. Geophys. Res. Lett. 25, 623–626 (1998)

    Article  ADS  Google Scholar 

  20. G. Ehret, C. Kiemle, W. Renger, G. Simmet, Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system. Appl. Opt. 32, 4534–4551 (1993)

    Article  ADS  Google Scholar 

  21. G.J. Koch, A.N. Dharamsi, C.M. Fitzgerald, J.C. McCarthy, Frequency stabilization of a Ho : Tm : YLF laser to absorption lines of carbon dioxide. Appl. Opt. 39, 3664–3669 (2000)

    Article  ADS  Google Scholar 

  22. K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkotter, M. Ostermeyer, J. Hoffner, C. Lemmerz, and D. Hoffmann, Frequency stabilisation of Q-switched Nd:YAG oscillators for airborne and spaceborne LIDAR systems - art. no. 64511L, in Solid State Lasers XVI: Technology and Devices, H. J. Hoffman, R. K. Shori, and N. Hodgson, eds. (2007), pp. L4511–L4511

  23. K. Numata, J.R. Chen, S.T. Wu, J.B. Abshire, M.A. Krainak, Frequency stabilization of distributed-feedback laser diodes at 1572 nm for lidar measurements of atmospheric carbon dioxide. Appl. Opt. 50, 1047–1056 (2011)

    Article  Google Scholar 

  24. W. Demtröder, Laser spectroscopy: experimental techniques (Springer, 2008)

  25. G. Wertheim, M. Butler, K. West, D. Buchanan, Determination of the Gaussian and Lorentzian content of experimental line shapes. Rev. Sci. Instrum. 45, 1369–1371 (1974)

    Article  ADS  Google Scholar 

  26. J.-F. D’Eu, B. Lemoine, F. Rohart, Infrared HCN lineshapes as a test of Galatry and speed-dependent Voigt profiles. J. Mol. Spectrosc. 212, 96–110 (2002)

    Article  ADS  Google Scholar 

  27. A. Predoi-Cross, W. Liu, C. Holladay, A.V. Unni, I. Schofield, A.R.W. McKellar, D. Hurtmans, Line profile study of transitions in the 30012 ← 00001 and 30013 ← 00001 bands of carbon dioxide perturbed by air. J. Mol. Spectrosc. 246, 98–112 (2007)

    Article  ADS  Google Scholar 

  28. W. Gong, G. Han, X. Ma, H. Lin, Multi-points scanning method for wavelength locking in CO2 differential absorption lidar. Opt. Commun. 305, 180–184 (2013)

    Article  ADS  Google Scholar 

  29. L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.M. Flaud, R.R. Gamache, J.J. Harrison, J.M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner, The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013)

    Article  ADS  Google Scholar 

  30. D. Bruneau, F. Gibert, P.H. Flamant, J. Pelon, Complementary study of differential absorption lidar optimization in direct and heterodyne detections. Appl. Opt. 45, 4898–4908 (2006)

    Article  ADS  Google Scholar 

  31. Q. Deliere, L. Fissiaux, M. Lepere, Absolute line intensities and self-broadening coefficients in the v(3) −v(1) band of carbon dioxide. J. Mol. Spectrosc. 272, 36–42 (2012)

    Article  ADS  Google Scholar 

  32. B. Perevalov, A. Campargue, B. Gao, S. Kassi, S. Tashkun, V. Perevalov, New CW-CRDS measurements and global modeling of 12C16O2 absolute line intensities in the 1.6 μm region. J. Mol. Spectrosc. 252, 190–197 (2008)

    Article  ADS  Google Scholar 

  33. R. Toth, L. Brown, C. Miller, V. Malathy Devi, D.C. Benner, Spectroscopic database of CO2 line parameters: 4300–7000 cm − 1. J. Quant. Spectrosc. Radiat. Transfer 109, 906–921 (2008)

    Article  ADS  Google Scholar 

  34. D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, M. Nakazato, T. Sakai, Development of a 1.6 μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile. Appl. Opt. 48, 748–757 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Nature Science Foundation of China (NFFC) No. 41127901 and No. 41201362.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, G., Gong, W., Lin, H. et al. On-line wavelength calibration of pulsed laser for CO2 DIAL sensing. Appl. Phys. B 117, 1041–1053 (2014). https://doi.org/10.1007/s00340-014-5925-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5925-8

Keywords

Navigation