Skip to main content
Log in

Dual-band asymmetric electromagnetic wave transmission for dual polarizations in chiral metamaterial structure

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, we propose a chiral metamaterial structure that enables dual-band asymmetric transmission effect for different linearly polarized electromagnetic waves. The metamaterial is composed of metallic spirals with two split-ring resonators sandwiching a dielectric slab and connecting with via hole. Strong one-way transmission of two orthogonally polarized waves at different frequency bands has been confirmed through both full-wave simulation and test on fabricated prototype at the microwave band. Analysis also shows such asymmetric transmission can be attributed to the induced asymmetric current distributions in the spiral that support strong polarization conversion and cross-polarization transmission. By scaling down the metamaterial structure, the concept could also be utilized at other frequency bands, such as submillimeter or even terahertz band and find applications in designing one-way electromagnetic wave devices or polarization spectral filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Z.F. Li, R.K. Zhao, T. Koschny, M. Kafesaki, K.B. Alici, E. Colak, H. Caglayan, E. Ozbay, C.M. Soukoulis, Appl. Phys. Lett. 97, 081901 (2010)

    Article  ADS  Google Scholar 

  2. J.F. Zhou, J.F. Dong, B.N. Wang, T. Koschny, M. Kafesaki, C.M. Soukoulis, Phys. Rev. B 79, 121104(R) (2009)

    Article  ADS  Google Scholar 

  3. S. Zhang, Y. Park, J. Li, X. Lu, W. Zhang, X. Zhang, Phys. Rev. Lett. 102, 023901 (2009)

    Article  ADS  Google Scholar 

  4. B. Wang, J. Zhou, T. Koschny, C.M. Soukoulis, Appl. Phys. Lett. 94, 151112 (2009)

    Article  ADS  Google Scholar 

  5. T.Q. Li, H. Liu, T. Li, S.M. Wang, F.M. Wang, R.X. Wu, P. Chen, S.N. Zhu, X. Zhang, Appl. Phys. Lett. 92, 131111 (2008)

    Article  ADS  Google Scholar 

  6. M. Decker, M. Ruther, C.E. Kriegler, J. Zhou, C.M. Soukoulis, S. Linden, M. Wegener, Opt. Lett. 34, 2501–2503 (2009)

    Article  ADS  Google Scholar 

  7. J.Y. Chin, M. Lu, T.J. Cui, Appl. Phys. Lett. 93, 251903 (2008)

    Article  ADS  Google Scholar 

  8. Y. Ye, S. He, Appl. Phys. Lett. 96, 203501 (2010)

    Article  ADS  Google Scholar 

  9. J. Han, H.Q. Li, Y.C. Fan, Z.Y. Wei, C. Wu, Y. Cao, X. Yu, F. Li, Z.S. Wang, Appl. Phys. Lett. 98, 151908 (2011)

    Article  ADS  Google Scholar 

  10. I.V. Shadrivov, V.A. Fedotov, D. Powell, Y.S. Kivshar, N.I. Zheludev, New J. Phys. 13, 033025 (2011)

    Article  ADS  Google Scholar 

  11. M. Decker, M.W. Klein, M. Wegener, S. Linden, Opt. Lett. 32, 856–858 (2007)

    Article  ADS  Google Scholar 

  12. S.V. Zhukovsky, A.V. Novitsky, V.M. Galynsky, Opt. Lett. 34, 1988–1990 (2009)

    Article  ADS  Google Scholar 

  13. V.A. Fedotov, P.L. Mladyonov, S.L. Prosvirnin, A.V. Rogacheva, Y. Chen, N.I. Zheludev, Phys. Rev. Lett. 97, 167401 (2006)

    Article  ADS  Google Scholar 

  14. V.A. Fedotov, A.S. Schwanecke, N.I. Zheludev, V.V. Khardikov, S.L. Prosvirnin, Nano Lett. 7, 1996–1999 (2007)

    Article  ADS  Google Scholar 

  15. A.S. Schwanecke, V.A. Fedotov, V.V. Khardikov, S.L. Prosvirnin, Y. Chen, N.I. Zheludev, Nano Lett. 8, 2940–2943 (2008)

    Article  ADS  Google Scholar 

  16. R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A.K. Azad, R.A. Cheville, F. Lederer, W. Zhang, N.I. Zheludev, Phys. Rev. B 80, 153104 (2009)

    Article  ADS  Google Scholar 

  17. E. Plum, V.A. Fedotov, N.I. Zheludev, Appl. Phys. Lett. 94, 131901 (2009)

    Article  ADS  Google Scholar 

  18. C. Menzel, C. Helgert, C. Rockstuhl, E.B. Kley, A. Tünnermann, T. Pertsch, F. Lederer, Phys. Rev. Lett. 104, 253902 (2010)

    Article  ADS  Google Scholar 

  19. C. Huang, Y. Feng, J. Zhao, Z. Wang, T. Jiang, Phys. Rev. B 85, 195131 (2012)

    Article  ADS  Google Scholar 

  20. M. Mutlu, A.E. Akosman, A.E. Serebryannikov, E. Ozbay, Phys. Rev. Lett. 108, 213905 (2012)

    Article  ADS  Google Scholar 

  21. A.T. de Hoop, Radio Sci. 22, 1171–1178 (1987)

    Article  ADS  Google Scholar 

  22. J.D. Jackson, Classical Electrodynamics (Wiley, NY, 1999)

    MATH  Google Scholar 

  23. A. Sihvola, Metamaterials 1, 2–11 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the National Nature Science Foundation of China (61301017, 61371034, 60990320, 61101011), the Key Grant Project of Ministry of Education of China (313029), the Ph.D. Programs Foundation of Ministry of Education of China (20100091110036, 20120091110032), and Partially supported by Jiangsu Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijun Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Zhang, M., Zhu, B. et al. Dual-band asymmetric electromagnetic wave transmission for dual polarizations in chiral metamaterial structure. Appl. Phys. B 117, 527–531 (2014). https://doi.org/10.1007/s00340-014-5864-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5864-4

Keywords

Navigation