Skip to main content
Log in

A thin wire ion trap to study ion–atom collisions built within a Fabry–Perot cavity

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on the implementation of a thin wire Paul trap with tungsten wire electrodes for trapping ions. The ion trap geometry, though compact, allows large optical access enabling a moderate finesse Fabry–Perot cavity to be built along the ion trap axis. The design allows a vapor-loaded magneto-optical trap of alkali atoms to be overlapped with trapped atomic or molecular ions. The construction and design of the trap are discussed, and its operating parameters are determined, both experimentally and numerically, for Rb+. The macromotion frequencies of the ion trap for 85Rb+ are determined to be f r  = 43 kHz for the radial and f z  = 54 kHz for the axial frequencies, for the experimentally determined optimal operating parameters. The destructive off axis ion extraction and detection by ion counting is demonstrated. Finally, evidence for the stabilization and cooling of trapped ions, due to ion–atom interactions, is presented by studying the ion-atom mixture as a function of interaction time. The utility and flexibility of the whole apparatus, for a variety of atomic physics experiments, are discussed in conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Rev. Mod. Phys. 75, 281 (2003)

    Article  ADS  Google Scholar 

  2. K. Blaum, Y. Novikov, G. Werth, Contemp. Phys. 51, 149 (2010)

    Article  ADS  Google Scholar 

  3. J. Ye, H.J. Kimble, Hidetoshi. Katori, Science 320, 1734 (2008)

    Article  ADS  Google Scholar 

  4. A.J. Leggett, Rev. Mod. Phys. 73, 307 (2001)

    Article  ADS  Google Scholar 

  5. W. Ketterle, D.S. Durfee, D.M. Stamper-Kurn, Proceedings of the International School of Physics “Enrico Fermi”. Course CXL, (1999), pp. 67–176

  6. W. Ketterle, M.W. Zwierlein, La Rivista del Nuovo Cimento 5(6), 247–422 (2008)

    ADS  Google Scholar 

  7. R. Cote, V. Kharchenko, M.D. Lukin, Phys. Rev. Lett. 89, 0930001 (2002)

    Article  Google Scholar 

  8. W.W. Smith, O.P. Makarov, J. Lin, J. Mod. Opt. 52, 2253 (2005)

    Article  ADS  Google Scholar 

  9. S. Willitsch, M.T. Bell, A.D. Gingell, S.R. Procter, T.P. Softley, Phys. Rev. Lett. 100, 043203 (2008)

    Article  ADS  Google Scholar 

  10. A.T. Grier, M. Cetina, F. Orucevic, V. Vuletic, Phys. Rev. Lett 102, 223201 (2009)

    Article  ADS  Google Scholar 

  11. W.G. Rellergert, S.T. Sullivan, S. Kotochigova, A. Petrov, K. Chen, S.J. Schowalter, E.R. Hudson, Phys. Rev. Lett. 107, 243201 (2011)

    Article  ADS  Google Scholar 

  12. S. Lee, K. Ravi, S. A. Rangwala, Phys. Rev. A 87, 052701 (2013)

    Google Scholar 

  13. F.H.J. Hall, M. Aymar, N. Bouloufa-Maafa, O. Duilieu, S. Willitsch, Phys. Rev. Lett. 107, 243202 (2011)

    Article  ADS  Google Scholar 

  14. S. Schmid, A. Harter, A. Frisch, S. Hoinka, J.Hecker Denschlag, Rev. Sci. Instrum. 83, 053108 (2012)

    Article  ADS  Google Scholar 

  15. M.T. Bell, T. P. Softley, Mol. Phys. 107, 99 (2009)

    Google Scholar 

  16. K. Ravi, S. Lee, A. Sharma, G. Werth, S.A. Rangwala, Nat. Commun. 3, 1126 (2012)

    Article  ADS  Google Scholar 

  17. W. Paul, H. Steinwedel, Z. Naturforsch A 8, 448 (1953)

    ADS  Google Scholar 

  18. J.D. Prestage, G.J. Dick, L. Malecki, J. Appl. Phys. 66, 1013 (1989)

    Article  ADS  Google Scholar 

  19. F.G. Major, V.N. Gheorghe, G. Werth, Charged Particle Traps. (Springer, Heidelberg, 2005)

    Google Scholar 

  20. J. Kleinert, C. Haimberger, P.J. Zabawa, N.P. Bigelow, Phys. Rev. Lett. 99, 143002 (2007)

    Article  ADS  Google Scholar 

  21. T. Ray, A. Sharma, S. Jyothi, S.A. Rangwala, Phys. Rev. A 87, 033832 (2013)

    Article  ADS  Google Scholar 

  22. K. Ravi, S. Lee, A. Sharma, G. Werth, S.A. Rangwala, Appl. Phys. B 107, 971 (2012)

    Article  ADS  Google Scholar 

  23. I. Sivarajah, D.S. Goodman, J.E. Wells, F.A. Narducci, W.W. Smith, Phys. Rev. A 86, 063419 (2012)

    Article  ADS  Google Scholar 

  24. J.E. Sansonetti, W.C. Martin, J. Phys. Chem. Ref. Data 34, 1559–2259 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Prof. E Krishnakumar, TIFR, Mumbai for technical assistance. Arijit Sharma and Ravi K. are acknowledged for useful discussion and thoughtful inputs. The authors acknowledge the excellent technical support provided by Mr. Narayanaswami and the other members of the RRI machine shop for the fabrication of this experiment. Ms. S. Sujatha, RAL, RRI is acknowledged for crucial electronics fabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Rangwala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, T., Jyothi, S., Ram, N.B. et al. A thin wire ion trap to study ion–atom collisions built within a Fabry–Perot cavity. Appl. Phys. B 114, 267–273 (2014). https://doi.org/10.1007/s00340-013-5686-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5686-9

Keywords

Navigation