Skip to main content
Log in

Trapping ions at high temperatures: thermal decay of C60 +

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

An ensemble of trapped C60 + ions has been heated with a continuous CO2 laser to a stationary state where, in time average, the same energy is emitted as absorbed. With 10 W laser power, equilibria have been reached, which correspond to temperatures between 1800 and 2000 K. The ions are confined in a radio frequency quadrupole field created by a set of ring electrodes (split ring electrode trap). The number of stored ions can be determined in two ways, on one side by extracting and counting them with a Daly detector, on the other side via imaging their thermal emission onto an intensified CCD camera. Single photon sensitivity and a spatial resolution of a few μm provide precise information on the geometrical distribution and the total number of the trapped C60 + ions. The spectral distribution of the emitted photons or their total number provides information on the internal energy of the ions. Trapping times of many minutes make it possible to follow very slow thermal loss of C2 from hot C60 + resulting in fragmentation rates between 10−1 and 10−3 s−1. Correlating them to the internal temperature leads to a curved Arrhenius plot. The resulting parameters are smaller than the values derived from nonequilibrium ensembles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Ehrenfreund, B.H. Foing, Science 329, 1159 (2010)

    Article  ADS  Google Scholar 

  2. E.A. Rohlfing, J. Chem. Phys. 89, 8103 (1988)

    Article  Google Scholar 

  3. C. Schulz, B.F. Kock, M. Hofmann, H. Mchelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B. 83, 333 (2006)

    Article  ADS  Google Scholar 

  4. R.F. Wuerker, H. Shelton, R.V. Langmuir, J. Appl. Phys. 30, 342 (1959)

    Article  ADS  Google Scholar 

  5. E. Fischer, Z. Phys. 156, 1 (1959)

    Article  ADS  Google Scholar 

  6. W. Paul, Rev. Mod. Phys. 62, 531 (1990)

    Article  ADS  Google Scholar 

  7. R.E. March, Mass Spectrom. Rev. 28, 961 (2009)

    Article  Google Scholar 

  8. S. Schlemmer, S. Wellert, F. Windisch, M. Grimm, S. Barth, D. Gerlich, Appl. Phys. A 78, 629 (2004)

    Article  ADS  Google Scholar 

  9. M.M. Abbas, D. Tankosic, P.D. Craven, J.F. Spann, A. LeClair, Astrophys. J. 645, 324 (2006)

    Article  ADS  Google Scholar 

  10. S. Schlemmer, J. Illemann, S. Wellert, D. Gerlich, J. Appl. Phys. 90, 5410 (2001)

    Article  ADS  Google Scholar 

  11. R. Wörgötter, B. Dünser, P. Scheier, T.D. Märk, M. Foltin, C.E. Klots, J. Laskin, C. Lifshitz, J. Chem. Phys. 104, 1225 (1996)

    Article  ADS  Google Scholar 

  12. S. Matt, O. Echt, P. Scheier, T.D. Märk, Chem. Phys. Lett. 348, 194 (2001)

    Article  ADS  Google Scholar 

  13. C. Lifshitz, Int. J. Mass Spectrom. 200, 423 (2000)

    Article  ADS  Google Scholar 

  14. K. Hansen, E.E.B. Campbell, O. Echt, Int. J. Mass Spectrom. 252, 79 (2006)

    Article  ADS  Google Scholar 

  15. J.U. Andersen, C. Gottrup, K. Hansen, P. Hvelplund, M.O. Larsson, Eur. Phys. J. D 17, 189 (2001)

    Article  ADS  Google Scholar 

  16. D. Gerlich, Adv. Chem. Phys. LXXXII, 1 (1992)

  17. T.M. Kim, A.V. Tolmachev, R. Harkewicz, D.C. Prior, G.A. Anderson, H.R. Udseth, R.D. Smith, T.H. Bailey, V.S. Rakov, J.H. Futrel, Anal. Chem. 72, 2247 (2000)

    Article  Google Scholar 

  18. D. Gerlich, J. Anal. At. Spectrom. 19, 581 (2004)

    Article  Google Scholar 

  19. D. Gerlich, in Low temperatures and cold molecules ed. by I.W.M. Smith ISBN-13 978-1-84816-209-9, (Imperial College Press, Distributer: World Scientific Publishing Co. Pte. Ltd., Singapore, 2008) p. 121

  20. D. Gerlich, in Low temperatures and cold molecules, ed. by I.W.M. Smith, ISBN-13 978-1-84816-209-9, (Imperial College Press, Distributer: World Scientific Publishing Co. Pte. Ltd., Singapore, 2008) p. 295

  21. J. Jašík, J. Žabka, J. Roithová, D. Gerlich, Int. J. Mass Spectrom. http://dx.doi.org/10.1016/j.ijms.2013.06.007, (2013)

  22. J. Abrefah, D.R. Olander, M. Balooch, W.J. Siekhaus, Appl. Phys. Lett. 60, 1313 (1992)

    Article  ADS  Google Scholar 

  23. S. Decker, PhD Thesis TU Chemnitz, http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200901988, (2009)

  24. D. Knight, M.H. Prior, J. Appl. Phys. 50, 3044 (1979)

    Article  ADS  Google Scholar 

  25. J.U. Andersen, E. Bonderup, K. Hansen, J. Phys. B At. Mol. Opt. Phys. 35, R1 (2002)

    ADS  Google Scholar 

  26. A.A. Lucas, L. Henrard, Ph Lambin, Nucl. Instrum. Methods Phys. Res. B96, 470 (1995)

    Article  ADS  Google Scholar 

  27. R. Mitzner, E.E.B. Campbell, J. Chem. Phys. 103, 2445 (1995)

    Article  ADS  Google Scholar 

  28. K. Hansen, J.U. Andersen, H. Cederquist, C. Gottrup, P. Hvelplund, M.O. Larsson, V.V. Petrunin, H.T. Schmidt, Eur. Phys. J. D 9, 351 (1999)

    Article  ADS  Google Scholar 

  29. J.U. Andersen, E. Bonderup, Eur. Phys. J. D 11, 413 (2000)

    Article  ADS  Google Scholar 

  30. E. Kolodney, A. Budrevich, B. Tsipinuk, Phys. Rev. Lett. 74, 510 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Financial support of the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Gerlich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerlich, D., Decker, S. Trapping ions at high temperatures: thermal decay of C60 + . Appl. Phys. B 114, 257–266 (2014). https://doi.org/10.1007/s00340-013-5668-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5668-y

Keywords

Navigation