Skip to main content
Log in

Reducing the effect of thermal noise in optical cavities

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Thermal noise in optical cavities imposes a severe limitation in the stability of the most advanced frequency standards at a level of a few \(10^{-16}\sqrt{\hbox{s}/\tau}\) for long averaging times τ. In this paper, we describe two schemes for reducing the effect of thermal noise in a reference cavity. In the first approach, we investigate the potential and limitations of operating the cavity close to instability, where the beam diameter on the mirrors becomes large. Our analysis shows that even a 10-cm short cavity can achieve a thermal-noise-limited fractional frequency instability in the low 10−16 regime. In the second approach, we increase the length of the optical cavity. We show that a 39.5-cm long cavity has the potential for a fractional frequency instability even below 10−16, while it seems feasible to achieve a reduced sensitivity of <10−10/g for vibration-induced fractional length changes in all three directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.D. Swallows, M. Bishof, S.L. Campbell, J. Ye, T.L. Nicholson, M.J. Martin, J.R. Williams, B.J. Bloom, Phys. Rev. Lett. 109, 230801 (2012)

    Article  Google Scholar 

  2. P. Gill, Metrologia 42, S125 (2005)

    Article  ADS  Google Scholar 

  3. C. Chou, D. Hume, J. Koelemeij, D. Wineland, T. Rosenband, Phys. Rev. Lett. 104(7), 70802 (2010)

    Article  ADS  Google Scholar 

  4. T. Rosenband, D. Hume, P. Schmidt, C. Chou, A. Brusch, L. Lorini, W. Oskay, R. Drullinger, T. Fortier, J.E. Stalnaker, S.A. Diddams, W.C. Swann, N.R. Newbury, W.M. Itano, D.J. Wineland, J.C. Bergquist, Science 319(5871), 1808 (2008)

    Article  ADS  Google Scholar 

  5. A.D. Ludlow, T. Zelevinsky, G.K. Campbell, S. Blatt, M.M. Boyd, M.H.G. De Miranda, M.J. Martin, J.W. Thomsen, S.M. Foreman, J. Ye, T.M. Fortier, J.E. Stalnaker, S.A. Diddams, Y.L. Coq, Z.W. Barber, N. Poli, N.D. Lemke, K.M. Beck, C.W. Oates, Science 319(5871), 1805 (2008)

    Article  ADS  Google Scholar 

  6. J. Hough, S. Rowan, B. Sathyaprakash, J. Phys. B: At. Mol. Opt. Phys. 38(9), S497 (2005)

    Article  ADS  Google Scholar 

  7. C. Braxmaier, O. Pradl, H. Müller, A. Peters, J. Mlynek, V. Loriette, S. Schiller, Phys. Rev. D 64(4), 042001 (2001)

    Article  ADS  Google Scholar 

  8. S. Herrmann, A. Senger, K. Möhle, M. Nagel, E. Kovalchuk, A. Peters, Phys. Rev. D 80(10), 105011 (2009)

    Article  ADS  Google Scholar 

  9. T. Nazarova, F. Riehle, U. Sterr, Appl. Phys. B: Lasers Opt. 83(4), 531 (2006)

    Article  ADS  Google Scholar 

  10. L. Chen, J. Hall, J. Ye, T. Yang, E. Zang, T. Li, Phys. Rev. A 74(5), 053801 (2006)

    Article  ADS  Google Scholar 

  11. Y. Tao, L. Wen-Bo, Z. Er-Jun, C. Li-Sheng, Chin. Phys. 16(5), 1374 (2007)

    Article  ADS  Google Scholar 

  12. S. Webster, M. Oxborrow, P. Gill, Phys. Rev. A 75(1), 11801 (2007)

    Article  ADS  Google Scholar 

  13. D. Guyomarc’h, G. Hagel, C. Zumsteg, M. Knoop, Phys. Rev. A 80(6) (2009)

  14. J. Millo, D. Magalhães, C. Mandache, Y. Le Coq, E. English, P. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, G. Santarelli, Phys. Rev. A 79(5), 053829 (2009)

    Article  ADS  Google Scholar 

  15. S. Dawkins, R. Chicireanu, M. Petersen, J. Millo, D. Magalhães, C. Mandache, Y. Le Coq, S. Bize, Appl. Phys. B Lasers Opt. 99(1), 41 (2010)

    Article  ADS  Google Scholar 

  16. P. Dubé, A.A. Madej, J.E. Bernard, L. Marmet, A.D. Shiner, Appl. Phys. B Lasers Opt. 95, 43-54 (2009)

    Article  ADS  Google Scholar 

  17. Y. Zhao, J. Zhang, A. Stejskal, T. Liu, V. Elman, Z. Lu, L. Wang, Opt. Exp. 17(11), 8970 (2009)

    Article  ADS  Google Scholar 

  18. D. Leibrandt, M. Thorpe, M. Notcutt, R. Drullinger, T. Rosenband, J. Bergquist, Opt. Express 19(4), 3471 (2011)

    Article  ADS  Google Scholar 

  19. S. Webster, P. Gill, Opt. Lett. 36(18), 3572 (2011)

    Article  Google Scholar 

  20. A. Gillespie, F. Raab, Phys. Rev. D 52(2), 577 (1995)

    Article  ADS  Google Scholar 

  21. Y. Levin, Phys. Rev. D 57(2), 659 (1998)

    Article  ADS  Google Scholar 

  22. K. Numata, A. Kemery, J. Camp, Phys. Rev. Lett. 93(25), 250602 (2004)

    Article  ADS  Google Scholar 

  23. T. Hong, H. Yang, E. Gustafson, R. Adhikari, Y. Chen, Arxiv preprint arXiv:1207.6145 (2012)

  24. K. Numata, Direct measurement of mirror thermal noise. Ph.D. thesis, University of Tokyo (2002)

  25. B. Mours, E. Tournefier, J. Vinet, Class. Quant. Grav. 23(20), 5777 (2006)

    Article  ADS  MATH  Google Scholar 

  26. A. Siegman, Lasers (University Science Books, Mill Valley, 1986)

    Google Scholar 

  27. H. Callen, T. Welton, Phys. Rev. 83(1), 34 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. H. Callen, R. Greene, Phys. Rev. 86, 702 (1952)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. T. Kessler, T. Legero, U. Sterr, J. Opt. Soc. Am. B 29(1), 178 (2012)

    Article  ADS  Google Scholar 

  30. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, J. Ye, Nat. Photonics 6, 687– (2012)

    Article  ADS  Google Scholar 

  31. G. Cole, S. Gröblacher, K. Gugler, S. Gigan, M. Aspelmeyer, Appl. Phys. Lett. 92(26), 261108 (2008)

    Article  ADS  Google Scholar 

  32. H. Kimble, B. Lev, J. Ye, Phys. Rev. Lett. 101(26), 260602 (2008)

    Article  ADS  Google Scholar 

  33. M. Gorodetsky, Phys. Lett. A 372(46), 6813 (2008)

    Article  ADS  Google Scholar 

  34. F. Khalili, Phys. Lett. A 334(1), 67 (2005)

    Article  ADS  Google Scholar 

  35. K. Somiya, A. Gurkovsky, D. Heinert, S. Hild, R. Nawrodt, S. Vyatchanin, Phys. Lett. A 375(11), 1363 (2011)

    Article  ADS  Google Scholar 

  36. F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E. Kley, A. Tünnermann, R. Schnabel, Phys. Rev. Lett. 104(16), 163903 (2010)

    Article  ADS  Google Scholar 

  37. Y. Jiang, A. Ludlow, N. Lemke, R. Fox, J. Sherman, L. Ma, C. Oates, Nat. Photonics 5, 158 (2011)

    Article  ADS  Google Scholar 

  38. M. Swallows, M. Martin, M. Bishof, C. Benko, Y. Lin, S. Blatt, A. Rey, J. Ye, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(3), 416 (2012)

    Article  Google Scholar 

  39. COMSOL. Multiphysics (2010). We estimate a meshing dependent error on the relative displacement field u(xyz)/L of around 10−11/g, and we used an adaptive meshing up to second generation to obtain the most accurate results

  40. R. Lalezari. private communication (2010)

  41. B. Young, F. Cruz, W. Itano, J. Bergquist, Phys. Rev. Lett. 82(19), 3799 (1999)

    Article  ADS  Google Scholar 

  42. S. Webster, M. Oxborrow, S. Pugla, J. Millo, P. Gill, Phys. Rev. A 77, 033847 (2008)

    Article  ADS  Google Scholar 

  43. Gulati S., Edwards M. (1997). Critical reviews of optical science and technology, CR (67):1997

  44. F.S.S.M. Properties. http://www.accuratus.com/fused.html

  45. B. Argence, E. Prevost, T. Lévèque, R. Le Goff, S. Bize, P. Lemonde, G. Santarelli, Opt. Express 20(23), 25409 (2012)

    Article  ADS  Google Scholar 

  46. D.R. Leibrandt, M.J. Thorpe, J.C. Bergquist, T. Rosenband, Opt. Express 19(11), 10278 (2011)

    Article  ADS  Google Scholar 

  47. S. Vogt, C. Lisdat, T. Legero, U. Sterr, I. Ernsting, A. Nevsky, S. Schiller, Appl. Phys. B: Lasers Opt. 104(4), 741 (2011)

    Article  ADS  Google Scholar 

  48. D. Anderson, Appl. Opt. 23(17), 2944 (1984)

    Article  ADS  Google Scholar 

  49. R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, H. Ward, Appl. Phys. B: Lasers Opt. 31(2), 97 (1983)

    Article  ADS  Google Scholar 

  50. F. Riehle, Frequency standards: basics and applications (Wiley-Vch, Weinheim 2006)

    Google Scholar 

  51. M. Koide, T. Ido, Jpn. J. Appl. Phys. 49(6), 0209 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the DFG through the Centre for Quantum Engineering and Space-Time Research (QUEST), by ESA through TRP AO4640/05/NL/PM and GSTP AO/1-6530/10/ NL/NA and by the European Metrology Research Program (EMRP). JRP SIB04. J.B.W. acknowledges support from the Hannover School for Laser, Optics and Space-Time Research (HALOSTAR) and the German National Academic Foundation (Studienstiftung des deutschen Volkes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sana Amairi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amairi, S., Legero, T., Kessler, T. et al. Reducing the effect of thermal noise in optical cavities. Appl. Phys. B 113, 233–242 (2013). https://doi.org/10.1007/s00340-013-5464-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5464-8

Keywords

Navigation