Skip to main content

Advertisement

Log in

Experimental implementation of higher dimensional time–energy entanglement

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Qudit entangled states have proven to offer significant advantages with respect to qubit states regarding the implementation of quantum cryptography or computation schemes. Here we propose and experimentally implement a scalable scheme for preparing and analyzing these states in the time–energy degree of freedom of two-photon pairs. Using the scheme, the entanglement of (2×4)-dimensional states is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B.P. Lanyon, M. Barbieri, M.P. Almeida, T. Jennewein, T.C. Ralph, K.J. Resch, G.J. Pryde, J.L. O’Brien, A. Gilchrist, A.G. White, Nat. Phys. 5, 134 (2009)

    Article  Google Scholar 

  2. J.T. Barreiro, T.-C. Wei, P.G. Kwiat, Nat. Phys. 4, 282 (2008)

    Article  Google Scholar 

  3. G.M. Nikolopoulos, K.S. Ranade, G. Alber, Phys. Rev. A 73, 032325 (2006)

    Article  ADS  Google Scholar 

  4. J.D. Franson, Phys. Rev. Lett. 62, 2205 (1989)

    Article  ADS  Google Scholar 

  5. W. Tittel, J. Brendel, B. Gisin, T. Herzog, H. Zbinden, N. Gisin, Phys. Rev. A 57, 3229 (1998)

    Article  ADS  Google Scholar 

  6. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, N. Gisin, Nature 421, 509 (2003)

    Article  ADS  Google Scholar 

  7. G. Ribordy, J. Brendel, J.-D. Gautier, N. Gisin, H. Zbinden, Phys. Rev. A 63, 012309 (2000)

    Article  ADS  Google Scholar 

  8. R.T. Thew, A. Acin, H. Zbinden, N. Gisin, Phys. Rev. Lett. 93, 010503 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  9. G. Weihs, M. Reck, H. Weinfurter, A. Zeilinger, Phys. Rev. A 54, 893 (1996)

    Article  ADS  Google Scholar 

  10. M. Zukowski, A. Zeilinger, M.A. Horne, Phys. Rev. A 55, 2564 (1997)

    Article  ADS  Google Scholar 

  11. I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, N. Gisin, Phys. Rev. A 66, 062308 (2002)

    Article  ADS  Google Scholar 

  12. H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, N. Gisin, Phys. Rev. A 69, 050304 (2004)

    Article  Google Scholar 

  13. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, A. Zeilinger, Opt. Express 15, 15377 (2007)

    Article  ADS  Google Scholar 

  14. F. Stellari, IEEE Trans. Electron Devices 48, 12 (2001)

    Article  Google Scholar 

  15. T.W. Hänsch, Rev. Mod. Phys. 78, 1297 (2006)

    Article  ADS  Google Scholar 

  16. O. Schulz, R. Steinhübl, M. Weber, B.-G. Englert, C. Kurtsiefer, H. Weinfurter, Phys. Rev. Lett. 90, 177901 (2003)

    Article  ADS  Google Scholar 

  17. B.-J. Pors, F. Miatto, G.W. ’t Hooft, E.R. Eliel, J.P. Woerdman, J. Opt. 13, 064008 (2011)

    Article  ADS  Google Scholar 

  18. D. Richart, Y. Fischer, W. Laskowski, H. Weinfurter, to be published

  19. D. Collins, N. Gisin, N. Linden, S. Massar, Phys. Rev. Lett. 88, 040404 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  20. N.J. Cerf, M. Bourennane, A. Karlsson, N. Gisin, Phys. Rev. Lett. 88, 127902 (2002)

    Article  ADS  Google Scholar 

  21. G. Kirchmair, F. Zähringer, R. Gerritsma, M. Kleinmann, O. Gühne, A. Cabello, R. Blatt, C. Roos, Nature 460, 494 (2009)

    Article  ADS  Google Scholar 

  22. E. Amselem, M. Rådmark, M. Bourennane, A. Cabello, Phys. Rev. Lett. 103, 160405 (2009)

    Article  ADS  Google Scholar 

  23. R. Lapkiewicz, P. Li, C. Schaeff, N.K. Langford, S. Ramelow, M. Wiesniak, A. Zeilinger, Nature 474, 490 (2011)

    Article  Google Scholar 

  24. R.B.A. Adamson, A.M. Steinberg, Phys. Rev. Lett. 105, 030406 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Witlef Wieczorek, Nikolai Kiesel, and Wieslaw Laskowski for helpful discussions. We acknowledge the support by the DFG-Cluster of Excellence MAP and an exchange program by DAAD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Richart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richart, D., Fischer, Y. & Weinfurter, H. Experimental implementation of higher dimensional time–energy entanglement. Appl. Phys. B 106, 543–550 (2012). https://doi.org/10.1007/s00340-011-4854-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4854-z

Keywords

Navigation