Skip to main content
Log in

Understanding plasmon resonances of metal-coated colloidal crystal monolayers

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Metal films deposited over two-dimensional colloidal crystals (MFoCC) constitute a low-cost periodic structure with interesting photonic and plasmonic properties. It has previously been shown that this structure exhibits a behaviour similar to the well-known Extraordinary Optical Transmission (EOT) of metallic hole arrays in planar films. Here, we explore the transmission characteristics of AgFoCC by systematic comparison with that of the bare CC. Furthermore with additional reflectivity measurements we evaluate the AgFoCC overall plasmonic response, which, notably, exhibits a strong plasmon absorption band at wavelengths larger than those of the transmitted maximum. By corroborating these results with finite-difference time-domain electromagnetic simulations, we identify a hybrid metal-dielectric propagative mode in the transmission mechanism. On the contrary a strongly localized mode is responsible for the maximum light absorption by this structure. These results shed new light on the current understanding of this highly promising plasmonic structure, being useful for the design of surface-enhanced Raman scattering and enhanced fluorescence substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Ozbay, Science 311, 189 (2006)

    Article  ADS  Google Scholar 

  2. S.A. Maier, H.A. Atwater, J. Appl. Phys. 98, 011101 (2005)

    Article  ADS  Google Scholar 

  3. W. Murray, W. Barnes, Adv. Mater. 19, 3771 (2007)

    Article  Google Scholar 

  4. W.A. Murray, S. Astilean, W.L. Barnes, Phys. Rev. B 69, 165407 (2004)

    Article  ADS  Google Scholar 

  5. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Nature 391, 667 (1998)

    Article  ADS  Google Scholar 

  6. H.F. Ghaemi, T. Thio, D.E. Grupp, T.W. Ebbesen, H.J. Lezec, Phys. Rev. B 58, 6779 (1998)

    Article  ADS  Google Scholar 

  7. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  8. Y. Wang, Y. Ye, X. Wang, X. Qian, Appl. Phys. B 102, 863 (2010)

    Article  ADS  Google Scholar 

  9. F. Eftekhari, R. Gordon, J. Ferreira, A.G. Brolo, D. Sinton, Appl. Phys. Lett. 92, 253103 (2008)

    Article  ADS  Google Scholar 

  10. J. Dintinger, S. Klein, T. Ebbesen, Adv. Mater. 18, 1267 (2006)

    Article  Google Scholar 

  11. J.V. Coe, J.M. Heer, S. Teeters-Kennedy, H. Tian, K.R. Rodriguez, Annu. Rev. Phys. Chem. 59, 179 (2008)

    Article  ADS  Google Scholar 

  12. C. Genet, T.W. Ebbesen, Nature 445, 39 (2007)

    Article  ADS  Google Scholar 

  13. M.M.J. Treacy, Phys. Rev. B 66, 195105 (2002)

    Article  ADS  Google Scholar 

  14. H. Lezec, T. Thio, Opt. Express 12, 3629 (2004)

    Article  ADS  Google Scholar 

  15. P. Zhan, Z. Wang, H. Dong, J. Sun, H.-T. Wang, S. Zhu, N. Ming, J. Zi, Adv. Mater. 18, 1612 (2006)

    Article  Google Scholar 

  16. L. Landström, D. Brodoceanu, K. Piglmayer, D. Bäuerle, Appl. Phys. A 84, 373 (2006)

    Article  ADS  Google Scholar 

  17. C. Farcau, S. Astilean, J. Opt. A, Pure Appl. Opt. 9, S345 (2007)

    Article  Google Scholar 

  18. Z. Wang, Y. Ye, Y. Zhang, J. Zhang, Appl. Phys. A 97, 225 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  19. Y. Li, J. Sun, L. Wang, P. Zhan, Z. Cao, Z. Wang, Appl. Phys. A 92, 291 (2008)

    Article  ADS  Google Scholar 

  20. C.L. Haynes, C.R. Yonzon, X. Zhang, R.P. Van Duyne, J. Raman Spectrosc. 36, 471 (2005)

    Article  ADS  Google Scholar 

  21. C. Farcau, S. Astilean, Appl. Phys. Lett. 95, 193110 (2009)

    Article  ADS  Google Scholar 

  22. M.H. Kim, S.H. Im, O.O. Park, Adv. Funct. Mater. 15, 1329 (2005)

    Article  Google Scholar 

  23. F. Járai-Szabó, Z. Néda, S. Aştilean, C. Farcău, A. Kuttesch, Eur. Phys. J. E 23, 7 (2007)

    Article  Google Scholar 

  24. N.D. Denkov, O.D. Velev, P.A. Kralchevsky, I.B. Ivanov, H. Yoshimura, K. Nagayama, Nature 361, 26 (1993)

    Article  ADS  Google Scholar 

  25. Lumerical Solutions, Inc., http://www.lumerical.com/

  26. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  27. C.L. Haynes, R.P. Van Duyne, J. Phys. Chem. B 105, 5599 (2001)

    Article  Google Scholar 

  28. C. Farcau, E. Vinţeler, S. Aştilean, J. Optoelectron. Adv. Mater. 10, 3165 (2008)

    Google Scholar 

  29. H.T. Miyazaki, H. Miyazaki, K. Ohtaka, T. Sato, J. Appl. Phys. 87, 7152 (2000)

    Article  ADS  Google Scholar 

  30. Y. Kurokawa, H. Miyazaki, Y. Jimba, Phys. Rev. B 65, 201102 (2002)

    Article  ADS  Google Scholar 

  31. M. Sarrazin, J. Vigneron, J. Vigoureux, Phys. Rev. B 67, 085415 (2003)

    Article  ADS  Google Scholar 

  32. H. Gao, J.M. McMahon, M.H. Lee, J. Henzie, S.K. Gray, G.C. Schatz, T.W. Odom, Opt. Express 17, 2334 (2009)

    Article  ADS  Google Scholar 

  33. C. Lopez, J. Opt. A, Pure Appl. Opt. 8, R1 (2006)

    Article  ADS  Google Scholar 

  34. W.L. Barnes, W.A. Murray, J. Dintinger, E. Devaux, T.W. Ebbesen, Phys. Rev. Lett. 92, 107401 (2004)

    Article  ADS  Google Scholar 

  35. M.I. Stockman, Phys. Rev. Lett. 93, 137404 (2004)

    Article  ADS  Google Scholar 

  36. M. Cortie, M. Ford, Nanotechnology 18, 235704 (2007)

    Article  ADS  Google Scholar 

  37. A.I. Maaroof, M.B. Cortie, N. Harris, L. Wieczorek, Small 4, 2292 (2008)

    Article  Google Scholar 

  38. L. Landstrom, D. Brodoceanu, D. Bauerle, F.J. Garcia-Vidal, S.G. Rodrigo, L. Martin-Moreno, Opt. Express 17, 761 (2009)

    Article  ADS  Google Scholar 

  39. C. Farcau, S. Astilean, J. Phys. Chem. C 114, 11717 (2010)

    Article  Google Scholar 

  40. L. Baia, M. Baia, J. Popp, S. Astilean, J. Phys. Chem. B 110, 23982 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by CNCSIS–UEFISCSU, project number PNII-ID_PCCE_129/2008. The author, M. Giloan, wish to thank for the financial support provided from programs co-financed by the Sectoral Operational Programme Human Resources Development, contract POSDRU 6/1.5/S/3—“Doctoral studies: through science towards society.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Astilean.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farcau, C., Giloan, M., Vinteler, E. et al. Understanding plasmon resonances of metal-coated colloidal crystal monolayers. Appl. Phys. B 106, 849–856 (2012). https://doi.org/10.1007/s00340-011-4849-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4849-9

Keywords

Navigation