Skip to main content
Log in

Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers. Part 2: Integrating spheres

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We have studied the effects of random laser speckle and self-mixing interference on TDLS based gas measurements made using integrating spheres. Details of the theory and TDLS apparatus are given in Part 1 of this paper and applied here to integrating spheres. Experiments have been performed using two commercial integrating spheres with diameters of 50 mm and 100 mm for the detection of methane at 1651 nm. We have calculated the expected levels of laser speckle related uncertainty, considered to be the fundamental limiting noise, and imaged subjective laser speckle in a sphere using different sized apertures. For wavelength modulation spectroscopy, noise equivalent absorbances (NEAs) of around 5×10−5 were demonstrated in both cases, corresponding to limits of detection of 1.2 ppm methane and 0.4 ppm methane respectively. Longer-term drift was found to be at an NEA of 4×10−4. This lies within our broad range of expectations. For a direct spectral scan with no wavelength dither, a limit of detection of 75 ppm or fractional measured power uncertainty of 3×10−3 corresponded well with our prediction for the objective speckle uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.U. White, J. Opt. Soc. Am. 32, 285 (1942)

    Article  ADS  Google Scholar 

  2. D.R. Herriott, H. Kogelnik, R. Kompfner, Appl. Opt. 3, 523 (1964)

    Article  ADS  Google Scholar 

  3. S.M. Chernin, E.G. Barskaya, Appl. Opt. 30(1), 51 (1991)

    Article  ADS  Google Scholar 

  4. Toptica GmbH, Product specification. Compact Herriott cell for absorption spectroscopy: CMP-30. Available at www.toptica.com (2009)

  5. R. Engeln, G. Berden, R. Peeters, G. Meijer, Rev. Sci. Instrum. 69, 3763 (1998)

    Article  ADS  Google Scholar 

  6. A. O’Keefe, D.A.G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988)

    Article  ADS  Google Scholar 

  7. A.G. Berezin, S.M. Chernin, D.B. Stavrovskii, in Proc. 7th International Conference on Tunable Diode Laser Spectroscopy—TDLS09, Paper E2 (2009)

  8. H.I. Schiff, G.I. Mackay, J. Bechara, in Air Monitoring by Spectroscopic Techniques, ed. by M.W. Sigrist (Wiley, New York, 1994). Chapter 5

    Google Scholar 

  9. Labsphere Inc. A Guide to Integrating Sphere Theory and Applications (Labsphere, North Sutton, 1998)

    Google Scholar 

  10. P. Elterman, Appl. Opt. 9(9), 2140 (1970)

    Article  ADS  Google Scholar 

  11. L.M. Hanssen, K.A. Snail, in Handbook of Vibrational Spectroscopy, vol. 2, ed. by J.M. Chalmers, P.R. Griffiths (Wiley, Chichester, 2002), p. 1175

    Google Scholar 

  12. E.S. Fry, G.W. Kattawar, R.M. Pope, Appl. Opt. 31(12), 2055 (1992)

    Article  ADS  Google Scholar 

  13. I. Fecht, M. Johnson, Meas. Sci. Technol. 10, 612 (1999)

    Article  ADS  Google Scholar 

  14. J. Hodgkinson, M. Johnson, J.P. Dakin, Appl. Opt. 44, 4360 (2005)

    Article  ADS  Google Scholar 

  15. E. Hawe, P. Chambers, C. Fitzpatrick, E. Lewis, Meas. Sci. Technol. 18, 3187 (2007)

    Article  ADS  Google Scholar 

  16. E. Hawe, C. Fitzpatrick, P. Chambers, G. Dooly, E. Lewis, Sensor. Actuat. A 141, 414 (2008)

    Google Scholar 

  17. C.G. Venkatesh, R.S. Eng, A.W. Mantz, Appl. Opt. 19(10), 1704 (1980)

    Article  ADS  Google Scholar 

  18. R.M. Abdullin, A.V. Lebedev, Sov. J. Opt. Technol. 55(3), 139 (1988)

    Google Scholar 

  19. S. Tranchart, I.H. Bachir, J.-L. Destombes, Appl. Opt. 35(36), 7070 (1996)

    Article  ADS  Google Scholar 

  20. D. Masiyano, J. Hodgkinson, R.P. Tatam, Appl. Phys. B 90, 279 (2008)

    Article  ADS  Google Scholar 

  21. J. Hodgkinson, D. Masiyano, R.P. Tatam, Appl. Opt. 48(30), 5748 (2009)

    Article  ADS  Google Scholar 

  22. A. Bozeit, J. Burke, H. Helmers, H. Sagehorn, R. Schuh, Opt. Laser Technol. 30, 325 (1998)

    Article  ADS  Google Scholar 

  23. D. Masiyano, J. Hodgkinson, S. Schilt, R.P. Tatam, Appl. Phys. B 96(4), 863 (2009)

    Article  ADS  Google Scholar 

  24. P. Werle, R. Mücke, F. Slemr, Appl. Phys. B 57, 131 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hodgkinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masiyano, D., Hodgkinson, J. & Tatam, R.P. Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers. Part 2: Integrating spheres. Appl. Phys. B 100, 303–312 (2010). https://doi.org/10.1007/s00340-010-4021-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4021-y

Keywords

Navigation