Skip to main content
Log in

FDTD modeling of realistic semicontinuous metal films

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We have employed a parallelized 3D FDTD (finite-difference time-domain) solver to study the electromagnetic properties of random, semicontinuous, metal films. The structural features of the simulated geometries are exact copies of the fabricated films and are obtained from SEM images of the films themselves. The simulation results show good agreement with the experimentally observed far-field spectra, allowing us to also study the nonlinear moments of the optical responses for these realistic nanostructures.

These results help to further our understanding of the details of the electromagnetic response of randomly structured metal films. Our results can also be applied in the optimization of random metal nanostructures and in the design of surface-enhanced spectroscopies and other plasmonic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.A.G. Bruggeman, Ann. Phys. (Leipz.) 24, 636 (1935)

    Article  ADS  Google Scholar 

  2. V.M. Shalaev, M.I. Stockman, R. Botet, Physica A 185, 181 (1992)

    Article  ADS  Google Scholar 

  3. A.K. Sarychev, R.C. McPhedran, V.M. Shalaev, Phys. Rev. B 62, 8531 (2000)

    Article  ADS  Google Scholar 

  4. V.A. Podolskiy, A.K. Sarychev, E.E. Narimanov, V.M. Shalaev, J. Opt. A, Pure Appl. Opt. 7, S32 (2005)

    Article  ADS  Google Scholar 

  5. A.K. Sarychev, V.M. Shalaev, Phys. Rep. 335, 276 (2000)

    Article  ADS  Google Scholar 

  6. U.K. Chettiar, A.V. Kildisheo, T.A. Klar, V.M. Shalaev, Opt. Express 14, 7872 (2006)

    Article  ADS  Google Scholar 

  7. M. Moskovits, Rev. Mod. Phys. 57, 783 (1985)

    Article  ADS  Google Scholar 

  8. V.P. Drachev, M.D. Thoreson, E.N. Khaliullin, V.J. Davisson, V.M. Shalaev, J. Phys. Chem. B 108, 18046 (2004)

    Article  Google Scholar 

  9. V.P. Drachev, M.D. Thoreson, V. Nashine, E.N. Khaliullin, D. Ben-Amotz, V.J. Davisson, V.M. Shalaev, J. Raman Spectrosc. 36, 648 (2005)

    Article  ADS  Google Scholar 

  10. V.P. Drachev, V.C. Nashine, M.D. Thoreson, D. Ben-Amotz, V.J. Davisson, V.M. Shalaev, Langmuir 21, 8368 (2005)

    Article  Google Scholar 

  11. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Phys. Rev. Lett. 78, 1667 (1997)

    Article  ADS  Google Scholar 

  12. M. Osawa, M. Ikeda, J. Phys. Chem. 95, 9914 (1991)

    Article  Google Scholar 

  13. A. Hartstein, J.R. Kirtley, J.C. Tsang, Phys. Rev. Lett. 45 (1980)

  14. M. Osawa, in Near-Field Optics and Surface Plasmon Polaritons, vol. 81 (Springer, Berlin, 2001), p. 163

    Chapter  Google Scholar 

  15. D. Enders, A. Pucci, Appl. Phys. Lett. 88, 184104 (2006)

    Article  ADS  Google Scholar 

  16. M. Westphalena, U. Kreibiga, J. Rostalskib, H. Lüthb, D. Meissner, Sol. Energy Mater. Sol. Cells 61, 97 (2000)

    Article  Google Scholar 

  17. A. Yakimov, S.R. Forrest, Appl. Phys. Lett. 80, 1667 (2002)

    Article  ADS  Google Scholar 

  18. D.A. Genov, A.K. Sarychev, V.M. Shalaev, J. Nonlinear Opt. Phys. 12, 419 (2003)

    Article  Google Scholar 

  19. P. Nyga, V.P. Drachev, M.D. Thoreson, V.M. Shalaev, Appl. Phys. B, Lasers Opt. 93, 59 (2008)

    Article  ADS  Google Scholar 

  20. S. Ducourtieux, V.A. Podolskiy, S. Gresillon, S. Buil, B. Bernini, P. Gadenne, A.C. Boccara, J.C. Rivoal, W.D. Bragg, K. Banerjee, V.P. Safonov, V.P. Drachev, Z.C. Ying, A.K. Sarychev, V.M. Shalaev, Phys. Rev. B 64, 165403 (2001)

    Article  ADS  Google Scholar 

  21. K. Seal, M.A. Nelson, Z.C. Ying, D.A. Genov, A.K. Sarychev, V.M. Shalaev, Phys. Rev. B 67, 035318 (2003)

    Article  ADS  Google Scholar 

  22. V.M. Shalaev, R. Botet, A.V. Butenko, Phys. Rev. B 48, 6662 (1993)

    Article  ADS  Google Scholar 

  23. S. Gresillon, L. Aigouy, A.C. Boccara, J.C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V.A. Shubin, A.K. Sarychev, V.M. Shalaev, Phys. Rev. Lett. 82, 4520 (1999)

    Article  ADS  Google Scholar 

  24. A.K. Sarychev, V.A. Shubin, V.M. Shalaev, Phys. Rev. B 60, 16389 (1999)

    Article  ADS  Google Scholar 

  25. X.C. Zeng, D.J. Bergman, P.M. Hui, D. Stroud, Phys. Rev. B 38, 10970 (1988)

    Article  ADS  Google Scholar 

  26. A. Taflove, S.C. Hagness, Computational Electromagnetics: The Finite Difference Time Domain Method (Artech House, Norwood, 2000)

    MATH  Google Scholar 

  27. P.B. Johnson, R.W. Christy, Phys. Rev. B 6 (1972)

  28. Y. Yagil, P. Gadenne, C. Julien, G. Deutscher, Phys. Rev. B 46, 2503 (1992)

    Article  ADS  Google Scholar 

  29. V.M. Shalaev, Optical Properties of Random Media (Springer, Berlin, 2002)

    Book  Google Scholar 

  30. A.K. Sarychev, D.J. Bergman, Y. Yagil, Phys. Rev. B 51, 5366 (1995)

    Article  ADS  Google Scholar 

  31. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. K. Chettiar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chettiar, U.K., Nyga, P., Thoreson, M.D. et al. FDTD modeling of realistic semicontinuous metal films. Appl. Phys. B 100, 159–168 (2010). https://doi.org/10.1007/s00340-010-3985-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-3985-y

Keywords

Navigation