Skip to main content
Log in

Generation of supercontinuum radiation in conventional single-mode fibre and its application to broadband absorption spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

High-pulse-energy supercontinuum radiation with a width exceeding 900 nm in the near-infrared spectral region has been generated in conventional single-mode fibre. The fibre was pumped at 1064 nm which is in the normal dispersion regime, resulting in predominantly red-shifted spectral broadening. Supercontinuum pulse energies exceeding 450 nJ were obtained. The use of conventional fibre allows for inexpensive generation of near-infrared supercontinuum radiation, featuring high pulse energies and good spatial beam quality. This supercontinuum radiation was used to acquire high-resolution (15 pm) broadband absorption spectra of H2O, C2H2 and C2H4 in the near-infrared spectral region (1340–1700 nm), using an optical spectrum analyser for detection. H2O spectra were also recorded at high repetition rates, by dispersing the supercontinuum pulses and detecting the transmitted signal in the time domain. A spectral resolution of 38 pm was obtained employing the dispersed supercontinuum pulses, which is comparable to the H2O line widths at ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.R. Alfano (ed.), The Supercontinuum Laser Source, 2nd edn. (Springer, New York, 2006)

  2. P.V. Kelkar, F. Coppinger, A.S. Bhushan, B. Jalali, Electron. Lett. 35, 1661 (1999)

    Article  Google Scholar 

  3. S.T. Sanders, Appl. Phys. B 75, 799 (2002)

    Article  ADS  Google Scholar 

  4. C. Lan, A.W. Caswell, L.A. Kranendonk, S.T. Sanders, Tech. Paper 2007-01-0188, SAE International (2007)

  5. M. Lehtonen, G. Genty, H. Ludvigsen, Appl. Phys. B 83, 231 (2005)

    Article  ADS  Google Scholar 

  6. F. Koch, S.V. Chernikov, J.R. Taylor, Opt. Commun. 175, 209 (2000)

    Article  ADS  Google Scholar 

  7. J. Hult, R.S. Watt, C.F. Kaminski, J. Lightwave Technol. 3, 820 (2007)

    Article  ADS  Google Scholar 

  8. I. Hartl, X.D. Li, C. Chudoba, R.K. Ghanta, T.H. Ko, J.G. Fujimoto, J.K. Ranka, R.S. Windeler, Opt. Lett. 26, 608 (2001)

    Article  ADS  Google Scholar 

  9. C. Dunsby, P.M.P. Lanigan, J. McGinty, D.S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D.M. Davis, M.A.A. Neil, P.M.W. French, J. Phys. D 37, 3296 (2004)

    Article  ADS  Google Scholar 

  10. G. McConnell, Opt. Express 12, 2844 (2004)

    Article  ADS  Google Scholar 

  11. J. Chou, Y. Han, B. Jalali, Photon. Technol. Lett. 16, 1140 (2004)

    Article  Google Scholar 

  12. J.W. Walewski, S.T. Sanders, Appl. Phys. B 79, 415 (2004)

    Google Scholar 

  13. S. Moon, D.Y. Kim, Opt. Express 14, 11575 (2006)

    Article  ADS  Google Scholar 

  14. J.M. Dudley, G. Genty, S. Coen, Rev. Mod. Phys. 78, 1135 (2006)

    Article  ADS  Google Scholar 

  15. J.K. Ranka, R.S. Windeler, A.J. Stentz, Opt. Lett. 25, 25 (2000)

    Article  ADS  Google Scholar 

  16. I. Thomann, A. Bartels, K.L. Corwin, N.R. Newbury, L. Hollberg, S.A. Diddams, J.W. Nicholson, M.F. Yan, Opt. Lett. 28, 1368 (2003)

    Article  ADS  Google Scholar 

  17. C. Lin, R.H. Stolen, Appl. Phys. Lett. 28, 216 (1976)

    Article  ADS  Google Scholar 

  18. A.N. Gur’yanov, D.D. Gusovskii, E.M. Dianov, E.A. Zakhidov, A.Y. Katasik, Kvant. Elektron. (Moskva) 12, 799 (1985)

    Google Scholar 

  19. S.N. Chernikov, Y. Zhu, J.R. Taylor, Opt. Lett. 22, 5 (1997)

    Google Scholar 

  20. J.W. Walewski, J.A. Filipa, C.L. Hagen, S.T. Sanders, Appl. Phys. B 83, 75 (2006)

    Article  ADS  Google Scholar 

  21. L.G. Cohen, C. Lin, IEEE J. Quantum Electron. QE-14, 11 (1978)

    Google Scholar 

  22. C. Lin, V.T. Ngugen, W.G. French, Electron. Lett. 4, 25 (1978)

    Google Scholar 

  23. R.J. Bartula, J.W. Walewski, S.T. Sanders, Appl. Phys. B 84, 395 (2006)

    Article  ADS  Google Scholar 

  24. C. Xia, M. Kumar, O.P. Kulkarni, M.N. Islam, F.L. Terry Jr., Opt. Lett. 13, 17 (2006)

    Google Scholar 

  25. C.L. Hagen, J.W. Walewski, S.T. Sanders, Photon. Technol. Lett. 18, 91 (2006)

    Article  Google Scholar 

  26. M.G. Allen, E.R. Furlong, R.K. Hanson, Tunable diode laser sensing and combustion control, in Applied Combustion Diagnostics, ed. by K. Kohse-Hoinghaus, J.B. Jeffries (Taylor & Francis, New York, 2002)

  27. G.P. Agrawal, Nonlinear Fiber Optics, 4th edn. (Academic, San Diego, CA, 2007)

  28. L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian Jr., K. Chance, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 96, 139 (2005)

    Article  ADS  Google Scholar 

  29. M. Bach, R. Georges, M. Herman, A. Perrin, Mol. Phys. 97, 265 (1999)

    Article  ADS  Google Scholar 

  30. A. Boschetti, D. Bassi, E. Iacob, S. Iannotta, L. Ricci, M. Scotoni, Appl. Phys. B 74, 273 (2002)

    Article  ADS  Google Scholar 

  31. S.T. Sanders, L. Ma, J. Jefferies, R.K. Hanson, Proc. Combust. Inst. 49, 161 (2002)

    Google Scholar 

  32. J. Hult, R.S. Watt, C.F. Kaminski, Opt. Express 15, 11385 (2007)

    Article  Google Scholar 

  33. C.L. Hagen, Fundamentals of Transient Thermal–Light Absorption Spectroscopy and Application of Optical Sensing in HCCI Engines, Chapter 2 – Optical Noise, Ph.D. (Mechanical Engineering) thesis, University of Wisconsin-Madison (2006)

  34. X. Liu, J.B. Jeffries, R.K. Hanson, Am. Inst. Aeronaut. Astronaut. J. 45, 411 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hult.

Additional information

PACS

07.07.Df; 42.62.Fi; 42.79.Nv; 42.81.-i

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watt, R., Kaminski, C. & Hult, J. Generation of supercontinuum radiation in conventional single-mode fibre and its application to broadband absorption spectroscopy. Appl. Phys. B 90, 47–53 (2008). https://doi.org/10.1007/s00340-007-2812-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2812-6

Keywords

Navigation