Skip to main content
Log in

The passive optically pumped Rb frequency standard: the laser approach

  • Invited paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This paper outlines the progress made during the last few decades in the implementation of a frequency standard using the optical-microwave double resonance technique and laser optical pumping in a sealed cell containing an alkali atom vapor in a microwave cavity. An analysis is presented based on a three-level model, describing the basic phenomena taking place in that approach. The expected frequency stability is calculated. The various frequency shifts taking place are described and their importance is evaluated. Several laser systems generally used in this context are described as well as the various techniques for stabilizing them. The results obtained by several research groups are outlined, compared to the analysis, and evaluated in the context of the implementation of a practical frequency standard. Conclusions are drawn relative to the future of a realistic implementation of such a laser pumped frequency standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.R. Carver, Proc. 11th Annual Frequency Control Symposium, 307 (1957)

  2. M. Arditi, Proc. 12th Annual Frequency Control Symposium, 606 (1958)

  3. M. Arditi, T.R. Carver, IRE National Convention Records, Pt 1, 3 (1958)

  4. A. Kastler, J. Phys. Radium 11, 255 (1950)

    Article  Google Scholar 

  5. P.L. Bender, E.C. Beaty, A.R. Chi, Phys. Rev. Lett. 1, 311 (1958)

    Article  ADS  Google Scholar 

  6. R.H. Dicke, Phys. Rev. 89, 472 (1953)

    Article  ADS  Google Scholar 

  7. H.G. Dehmelt, Phys. Rev. 105, 1487 (1957)

    Article  ADS  Google Scholar 

  8. M. Arditi, T.R. Carver, Phys. Rev. Lett. 109, 1012 (1958)

    ADS  Google Scholar 

  9. E. Jechart, US Patent No 3,903,491 (1975)

  10. J. Vanier, R. Kunski, P. Paulin, M. Têtu, N. Cyr, Can. J. Phys. 60, 1396 (1982)

    ADS  Google Scholar 

  11. P. Davidovits, Appl. Phys. Lett. 5, 15 (1964)

    Article  ADS  Google Scholar 

  12. J. Vanier, Phys. Rev. 168, 129 (1968)

    Article  ADS  Google Scholar 

  13. N. Beverini, F. Strumia, Opt. Commun. 2, 189 (1970)

    Article  ADS  Google Scholar 

  14. G. Rovera, A. De Marchi, J. Vanier, IEEE Trans. Instrum. Meas. IM-25, 203 (1976)

    Google Scholar 

  15. G. Singh, P. DiLavore, C.O. Alley, IEEE J. Quantum Electron. QE-7, 196 (1971)

    Article  ADS  Google Scholar 

  16. J.-L. Picqué, IEEE J. Quantum Electron. QE-10, 802 (1974)

    Google Scholar 

  17. J. Vanier, Appl. Phys. B 81, 421 (2005)

    Article  ADS  Google Scholar 

  18. J. Vanier, M. Levine, D. Janssen, M. Delaney, IEEE Trans. Instrum. Meas. 52, 822 (2003)

    Article  Google Scholar 

  19. J. Vanier, C. Audoin, The Quantum Physics of Atomic Frequency Standards, ed. by A. Hilger (Bristol, Philadelphia, 1989)

  20. J. Vanier, M. Têtu, L.G. Bernier, IEEE Trans. Instrum. Meas. IM-28, 188 (1979)

    Article  Google Scholar 

  21. J. Vanier, L.G. Bernier, IEEE Trans. Instrum. Meas. IM-30, 177 (1982)

    Google Scholar 

  22. W. Happer, Rev. Mod. Phys. 44, 169 (1972)

    Article  ADS  Google Scholar 

  23. J. Vanier, M. Levine, D. Janssen, M. Delaney, Phys. Rev. A 67, 065801 (2003)

    Article  ADS  Google Scholar 

  24. U. Fano, Rev. Mod. Phys. 29, 74 (1957)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. J. Vanier, Basic Theory of Lasers and Masers, A Density Matrix Approach (Gordon & Breach, New York, 1971)

    Google Scholar 

  26. G. Mileti, Thèse, Université de Neuchâtel, Switzerland (1995), unpublished

  27. A. Godone, F. Levi, S. Micalizio, J. Vanier, Eur. Phys. J. D 18, 5 (2002)

    ADS  Google Scholar 

  28. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, New York, 1999)

    Google Scholar 

  29. W. Happer, B.S. Mather, Phys. Rev. 163, 12 (1967)

    Article  ADS  Google Scholar 

  30. J. Vanier, Can. J. Phys. 47, 1461 (1969)

    ADS  Google Scholar 

  31. P. Barrat, C. Cohen-Tannoudji, J. Phys. Radium 22, 231, 443 (1961)

    Google Scholar 

  32. B.S. Mather, H. Tang, W. Happer, Phys. Rev. 171, 11 (1968)

    Article  ADS  Google Scholar 

  33. J.C. Camparo, R.P. Frueholz, Phys. Rev. A 31, 1440 (1985)

    Article  ADS  Google Scholar 

  34. G. Mileti, P. Thomann, Proc. 9th Euro. Forum on Time and Freq., 271 (1995)

  35. J.C. Camparo, H.P. Frueholz, C.H. Volk, Phys. Rev. A 27, 1914 (1983)

    Article  ADS  Google Scholar 

  36. P.J. Chantry, B.R. McAvoy, J.M. Zomp, I. Liberman, Proc. IEEE Int. Freq. Control Symp. 114 (1992)

  37. M. Hashimoto, M. Ohtsu, H. Furuta, Proc. 41st An. Freq. Control Symp. 25 (1987)

  38. I. Matsuda, S. Yamaguchi, M. Suzuki, IEEE J. Quantum Electron. QE-26, 9 (1990)

    Article  ADS  Google Scholar 

  39. L.L. Lewis, M. Feldman, Proc. 35th Ann. Freq. Control Symp. 612 (1981)

  40. J.C. Camparo, R.P. Frueholz, Phys. Rev. A 31, 1440 (1985)

    Article  ADS  Google Scholar 

  41. J.C. Camparo, C.M. Klimcak, S.J. Herbulock, IEEE Trans. Instrum. Meas. 54, 1873 (2005)

    Article  Google Scholar 

  42. Y. Saburi, Y. Koga, S. Kinugawa, T. Imamura, H. Suga, Y. Ohuchi, IEEE Electron. Lett. 30, 633 (1994)

    Google Scholar 

  43. M. Hashimoto, M. Ohtsu, IEEE J. Quantum Electron. QE-23, 446 (1987)

    Article  ADS  Google Scholar 

  44. M. Hashimoto, M. Ohtsu, IEEE Trans. Instrum. Meas. 39, 458 (1990)

    Article  Google Scholar 

  45. M. Ohtsu, M. Hashimoto, O. Hidetaka, Proc. 39th Ann. Freq. Control Symp., 43 (1985)

  46. P.J. Chantry, I.I. Liberman, W.R. Verbanets, C.F. Petronio, R.F. Cather, W.D. Partlow, Proc. IEEE Int. Freq. Control Symp. 1002 (1996)

  47. G. Mileti, J.Q. Deng, F. Walls, D.A. Jennings, R.E. Drullinger, IEEE J. Quantum Electron. QE-34, 233 (1998)

    Article  ADS  Google Scholar 

  48. Y. Ohuchi, H. Suga, T. Suzuki, M. Uchino, K. Takahei, M. Tsuda, Y. Saburi, Proc. IEEE Int. Freq. Control Symp., 651 (2000)

  49. C. Afolderbach, G. Mileti, Proc. 35th Precise Time and Time Interval (PTTI) Meeting, 489 (2003)

  50. J.C. Camparo, J.G. Coffer, Phys. Rev. A 59, 728 (1999)

    Article  ADS  Google Scholar 

  51. N.D. Bhaskar, Proc. Int. Freq. Control Symp. 87 (1993) and IEEE Trans. Ultrasonics Ferroelectr. Frequency Control 42, 15 (1995)

  52. G. Missout, J. Vanier, IEEE Trans. Instrum. Meas. 24, 180 (1975)

    Article  Google Scholar 

  53. J. Vanier, R. Kunski, N. Cyr, J.Y. Savard, M. Têtu, J. Appl. Phys. 53, 5387 (1982)

    Article  ADS  Google Scholar 

  54. Y. Ohuchi, H. Suga, T. Suzuki, M. Uchino, K. Takahei, M. Tsuda, Y. Saburi, Proc. IEEE Int. Freq. Control Symp., 651 (2000)

  55. C. Affolderbach, F. Droz, G. Mileti, IEEE Trans. Instrum. Meas. 55, 429 (2006)

    Article  Google Scholar 

  56. J.C. Camparo, Proc. 50th IEEE Int. Freq. Control Symp., 988 (1996)

  57. J. Camparo, J. Coffer, J. Townsend, J. Opt. Soc. Am. B 22, 529 (2005)

    Article  ADS  Google Scholar 

  58. M. Hashimoto, M. Ohtsu, J. Opt. Soc. Am. B 6, 1777 (1989)

    ADS  Google Scholar 

  59. M. Arditi, J.-L. Picqué, J. Phys. B 8, L331 (1975)

    Article  ADS  Google Scholar 

  60. I. Matsuda, S. Yamaguchi, M. Suzuki, IEEE J. Quantum Electron. QE-26, 9 (1990)

    Article  ADS  Google Scholar 

  61. S. Yamagushi, I. Matsuda, M. Suzuki, IEEE J. Quantum Electron. QE-28, 2551 (1992)

    Article  ADS  Google Scholar 

  62. J. Deng, J. Liu, S. An, Y. Tan, X. Zhu, IEEE Trans. Instrum. Meas. 43, 549 (1994)

    Article  Google Scholar 

  63. G. Mileti, J.Q. Deng, F. Walls, J.P. Low, R.E. Drullinger, Proc. IEEE Int. Freq. Control Symp., 1066 (1996)

  64. F. Levi, C. Novero, A. Godone, G. Brida, IEEE Trans. Instrum. Meas. 46, 126 (1997)

    Article  Google Scholar 

  65. C. Affolderbach, G. Mileti, D. Slavov, C. Andreeva, S. Cartaleva, Proc. 18th Eur. Frequency and Time Forum, 084 (2004)

  66. F. Levi, Thesis, Politecnico di Torino, Italy (1995)

  67. J.C. Camparo, J.G. Coffer, J.J. Townsend, Proc. IEEE Int. Freq. Control Symp., 134 (2004)

  68. C. Affolderbach, G. Mileti, C. Andreeva, D. Slavov, T. Karaulanov, S. Cataleva, Proc. IEEE Int. Freq. Control Symp. jointly with 17th European Frequency and Time Forum, 27 (2003)

  69. C. Affolderbach, C. Andreeva, S. Cartaleva, T. Karaulanov, G. Mileti, D. Slavov, Appl. Phys. B 80, 841 (2005)

    Article  ADS  Google Scholar 

  70. F. Levi, A. Godone, J. Vanier, IEEE Trans. Instrum. Meas. 47, 466 (2000)

    Google Scholar 

  71. J. Deng, Proc. IEEE Int. Freq. Control Symp., 659–663 (2000)

  72. J. Camparo, S.B. Delcamp, Opt. Commun. 120, 257 (1995)

    Article  ADS  Google Scholar 

  73. J. Camparo, Proc. 50th IEEE Int. Freq. Control Symp., 988 (1996)

  74. T.C. English, E. Jechart, T.M. Kwon, Proc. 10th PTTI, p. 147 (1978)

  75. E.I. Alekseyev, Y.N. Bazarov, G.I. Telegin, Radio Eng. Electron. Phys. 20, 73 (1975)

    Google Scholar 

  76. M. Arditi, T.R. Carver, IEEE Trans. Instrum. Meas. 13, 146 (1964)

    Article  Google Scholar 

  77. A. Godone, S. Micalizio, F. Levi, Phys. Rev. A 70, 023409 (2004)

    Article  ADS  Google Scholar 

  78. A. Godone, S. Micalizio, F. Levi, C. Calosso, Phys. Rev. A 74, 043401 (2006)

    Article  ADS  Google Scholar 

  79. A. Risley, G. Busca, Proc. 32nd Frequency Control Symposium, 506 (1978)

  80. S. Micalizio, A. Godone, F. Levi, J. Vanier, Phys. Rev. A 73, 033414 (2006)

    Article  ADS  Google Scholar 

  81. G. Mileti, I. Rüedi, M. Schweda, Proc. 6th Eur. Frequency and Time Forum, 515 (1992)

  82. A. Risley, S. Jarvis, J. Vanier, J. Appl. Phys. 51, 4571 (1980)

    Article  ADS  Google Scholar 

  83. J.C. Camparo, R.P. Frueholz, IEEE Trans. Ultrasonics Ferroelectr. Frequency Control 36, 185 (1989)

    Google Scholar 

  84. E.B. Sarozi, W.A. Sarozi, W.A. Johnson, S.K. Karuza, Proc. 23rd An. Prec. Time and Time Interval (PTTI) App. Plan. Meet. 229 (1992)

  85. J.C. Camparo, Phys. Rev. Lett. 80, 222 (1998)

    Article  ADS  Google Scholar 

  86. J.C. Camparo, Phys. Rev. A 62, 013812 (2000)

    Article  ADS  Google Scholar 

  87. X. Huang, B. Xia, D. Zhong, S. An, X. Zhu, G. Mei, Proc. IEEE Int. Freq. Control Symp., 105 (2001)

  88. J.G. Coffer, B. Sickmiller, J.C. Camparo, IEEE Trans. Ultras. Ferooel. Freq. Cont. 51, 129 (2004)

    Google Scholar 

  89. D. Halford, Proc. of the Frequency standards and metrology seminar, 413 unpublished, Laval University Quebec, Canada (1971)

  90. C. Mandache, Rapport de stage, Mairie de Paris, France (2006), unpublished

  91. I. Joindot, J. Phys. III France 2, 1591 (1992)

    Google Scholar 

  92. N. Sagna, C. Mandache, P. Thomann, Proc. 6th European Frequency and Time Forum, 521 (1992)

  93. J.G. Coffer, J.C. Camparo, Proc. IEEE Int. Freq. Control Symp., 52 (1998)

  94. H. Tsuchida, T. Tako, Japan. J. Appl. Phys. 22, 1152 (1983)

    Article  ADS  Google Scholar 

  95. M. de Labachelerie, C. Latrasse, P. Kemssu, P. Cerez, J. Phys. III France 2, 1557 (1992)

    Google Scholar 

  96. M. Ohtsu, K. Nakagawa, M. Kourogi, W. Wang, J. Appl. Phys. 73, R1 (1993)

    Article  ADS  Google Scholar 

  97. L. Goldberg, H.F. Taylor, A. Dandridge, J.F. Weller, R.O. Miles, IEEE J. Quantum Electron. QE-18, 555 (1982)

    Article  ADS  Google Scholar 

  98. T. Kanada, K. Nawata, Opt. Commun. 31, 81 (1979)

    Article  ADS  Google Scholar 

  99. S. Saito, O. Nilsson, Y. Yamamoto, IEEE J. Quantum Electron. QE-18, 961 (1982)

    Article  ADS  Google Scholar 

  100. M. de Labachellerie, P. Cerez, Opt. Commun. 55, 174 (1985)

    Article  ADS  Google Scholar 

  101. B. Dahmani, L. Hollberg, R. Drullinger, Opt. Lett. 12, 876 (1987)

    Article  ADS  Google Scholar 

  102. P. Laurent, A. Clairon, C. Bréant, IEEE J. Quantum Electron. QE-25, 1131 (1989)

    Article  ADS  Google Scholar 

  103. H. Li, H.R. Telle, IEEE J. Quantum Electron. QE-25, 257 (1989)

    Article  ADS  Google Scholar 

  104. M. Ohtsu, M. Hashimoto, O. Hidetaka, Proc. 39th Ann. Freq. Control Symp., 43 (1985)

  105. M. Kozuma, M. Kourogi, M. Ohtsu, Appl. Phys. Lett. 61, 1895 (1992)

    Article  ADS  Google Scholar 

  106. M. de Labachelerie, K. Diomande, N. Dimarcq, Proc. 2nd European Frequency and Time Forum, Neuchâtel, 547 (1988)

  107. M.W. Fleming, A. Mooradian, IEEE J. Quantum Electron. QE-17, 44 (1981)

    Article  ADS  Google Scholar 

  108. H. Tsuchida, M. Ohtsu, T. Tako, Japan. J. Appl. Phys. 21, L561 (1982)

    Article  ADS  Google Scholar 

  109. G.P. Barwood, P. Gill, W.R.C. Rowley, J. Phys. E 21, 966 (1988)

    Article  ADS  Google Scholar 

  110. G.P. Barwood, P. Gill, W.R.C. Rowley, Appl. Phys. B 53, 142 (1991)

    Article  ADS  Google Scholar 

  111. N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, F. Sorrentino, Appl. Phys. B 73, 133 (2001)

    ADS  Google Scholar 

  112. C. Afolderbach, G. Mileti, Proc. IEEE Int. Freq. Cont. Symp. jointly with 17th Eur. Frequency and Time Forum, 109 (2003)

  113. C. Affolderbach, G. Mileti, D. Slavov, C. Andreeva, S. Cartaleva, Proc. 18th Eur. Frequency and Time Forum, 84 (2004)

  114. C. Affolderbach, F. Droz, G. Mileti, Rev. Sci. Instrum. 76, 073108 (2005)

    Article  ADS  Google Scholar 

  115. J.C. Camparo, W.F. Buell, Proc. IEEE Int. Freq. Control Symp., 253 (1997)

  116. J.G. Coffer, J.C. Camparo, Proc. IEEE Int. Freq. Control Symp., 52 (1998)

  117. J.C. Camparo, J. Opt. Soc. Am. B 15, 1177 (1998)

    Article  ADS  Google Scholar 

  118. J.C. Camparo, J.G. Coffer, Phys. Rev. A 59, 728 (1999)

    Article  ADS  Google Scholar 

  119. J.C. Camparo, Report No TR-96(8555)-2 25430, The Aerospace Corporation, El Segundo, CA 90245-4691, 10 March 2000

  120. J.G. Coffer, M. Anderson, J.C. Camparo, Phys. Rev. A 65, 033807 (2002)

    Article  ADS  Google Scholar 

  121. G. Mileti, J.Q. Deng, F. Walls, D.A. Jennings, R.E. Drullinger, IEEE J. Quantum Electron. QE-34, 233 (1998)

    Article  ADS  Google Scholar 

  122. G. Kramer, CPEM 1974 Digest, IEEE Conf. Pub. No 113, unpublished

  123. C. Audoin, V. Candelier, N. Dimarcq, IEEE Trans. Instrum. Meas. 40, 121 (1991)

    Article  Google Scholar 

  124. C. Szekely, F. Walls, J.P. Lowe, R.E. Drullinger, A. Novick, IEEE Trans. Ultrasonics Ferroelectr. Frequency Control 41, 518 (1994)

    Google Scholar 

  125. J.Q. Deng, G. Mileti, D.A. Jennings, R.E. Drullinger, F. Walls, Proc. IEEE Int. Freq. Control Symp., 438 (1997)

  126. J.Q. Deng, A. De Marchi, F.L. Walls, R.E. Drullinger, IEEE Int. Freq. Cont. Symp., 95 (1998)

  127. A. De Marchi, L. Lo Presti, G.D. Rovera, IEEE Int. Freq. Cont. Symp., 104 (1998)

  128. M. Ortalano, N. Beverini, A. De Marchi, IEEE Trans. Ultrasonics Ferroelectr. Frequency Control 47, 471 (2000)

    Google Scholar 

  129. N. Beverini, M. Ortalano, G.A. Costanzo, A. De Marchi, E. Maccioni, P. Marsili, A. Ruffini, F. Periale, V. Barychev, Laser Phys. 11, 1110 (2001)

    Google Scholar 

  130. J. Camparo, IEEE Trans. Ultrasonics Ferroelectr. Frequency Control 52, 1075 (2005)

    Google Scholar 

  131. V. Shaw, V. Gerginov, P.D.D. Schwindt, S. Knappe, L. Hollberg, J. Kitching, Appl. Phys. Lett. 89, 151124 (2006)

    Article  ADS  Google Scholar 

  132. P. Davidovits, R. Novick, Proc. IEEE 54, 155 (1966)

    Article  Google Scholar 

  133. M. Têtu, G. Busca, J. Vanier, IEEE Trans. Instrum. Meas. IM-22, 250 (1973)

    Article  Google Scholar 

  134. G. Busca, R. Brousseau, J. Vanier, IEEE Trans. Instrum. Meas. IM-24, 291 (1975)

    Article  Google Scholar 

  135. A. Michaud, P. Tremblay, M. Têtu, IEEE Trans. Instrum. Meas. 40, 170 (1991)

    Article  Google Scholar 

  136. A. Michaud, P. Tremblay, M. Têtu, IEEE CPEM Digest, 155, unpublished (1990)

  137. J. Deng, J. Liu, S. An, Y. Tan, X. Zhu, IEEE Trans. Instrum. Meas. 43, 549 (1994)

    Article  Google Scholar 

  138. N.F. Ramsey, Molecular Beams (Clarendon Press, Oxford, 1956)

    Google Scholar 

  139. M. Arditi, T.R. Carver, IEEE Trans. Instrum. Meas. 13, 146 (1964)

    Article  Google Scholar 

  140. A. Godone, S. Micalizio, C.E. Calosso, F. Levi, IEEE Trans. Ultrasonics Ferroelectr. Frequency Control 53, 525 (2006)

    Google Scholar 

  141. J. Vanier, C. Audoin, Metrologia 42, S31 (2005)

    Article  ADS  Google Scholar 

  142. A. Godone, S. Micalizio, F. Levi, C.E. Calosso, Phys. Rev. A 7, 014340 (2006)

    Google Scholar 

  143. H. Robinson, Appl. Phys. Lett. 40, 771773 (1982)

    Article  Google Scholar 

  144. M.A. Bouchiat, Etude par pompage optique de la relaxation d’atomes de rubidium (Publications scientifiques et techniques du Ministère de l’air, Paris, 1965)

    Google Scholar 

  145. J. Vanier, J.F. Simard, J.S. Boulanger, Phys. Rev. A 9, 1031 (1974)

    Article  ADS  Google Scholar 

  146. J. Vanier, R. Kunski, A. Brisson, P. Paulin, J. Phys. C 8, 42, 139 (1981)

    Google Scholar 

  147. Y. Xiao, I. Novikova, D.F. Phillips, R.L. Walsworth, Phys. Rev. Lett. 96, 043601 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vanier.

Additional information

PACS

06.30.Ft; 32.10.Fn; 32.30.Bv; 32.70.Jz; 32.80.Wu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanier, J., Mandache, C. The passive optically pumped Rb frequency standard: the laser approach. Appl. Phys. B 87, 565–593 (2007). https://doi.org/10.1007/s00340-007-2643-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2643-5

Keywords

Navigation