Skip to main content
Log in

Born expansion of the Casimir–Polder interaction of a ground-state atom with dielectric bodies

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Within leading-order perturbation theory, the Casimir–Polder potential of a ground-state atom placed within an arbitrary arrangement of dispersing and absorbing linear bodies can be expressed in terms of the polarizability of the atom and the scattering Green tensor of the body-assisted electromagnetic field. Based on a Born series of the Green tensor, a systematic expansion of the Casimir–Polder potential in powers of the electric susceptibilities of the bodies is presented. The Born expansion is used to show how and under which conditions the Casimir–Polder force can be related to microscopic many-atom van der Waals forces, for which general expressions are presented. As an application, the Casimir–Polder potentials of an atom near a dielectric ring and an inhomogeneous dielectric half space are studied and explicit expressions are presented that are valid up to second order in the susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dzyaloshinskii IE, Lifshitz EM, Pitaevskii LP (1961) Adv. Phys. 10:165

    Article  ADS  MathSciNet  Google Scholar 

  2. Langbein D (1974) Springer Tr. Mod. Phys. 72:1

    Article  Google Scholar 

  3. Mahanty J, Ninham BW (1976) Dispersion Forces. Academic, London

    Google Scholar 

  4. E.A. Hinds, in Advances in Atomic, Molecular, and Optical Physics, vol 28, ed. by D. Bates, B. Bederson (Academic, New York, 1991), p. 237

  5. Milonni PW (1994) The Quantum Vacuum, An Introduction to Quantum Electrodynamics. Academic, San Diego, CA

    Google Scholar 

  6. Casimir HBG, Polder D (1948) Phys. Rev. 73:360

    Article  MATH  ADS  Google Scholar 

  7. Casimir HBG (1948) Proc. K. Ned. Akad. Wet. 51:793

    MATH  Google Scholar 

  8. D.L. Nelson, M.M. Cox, Lehninger Principles of Biochemistry (Worth, New York, 2002) pp 177, 250–253, 331, 365, 1053

  9. Autumn K, Sitti M, Liang YA, Peattie AM, Hansen WR, Sponberg S, Kelly TW, Fearing R, Israelachvili JN, Full RJ (2002) Proc. Natl. Acad. Sci. USA 99(19):12252

    Article  PubMed  ADS  Google Scholar 

  10. Kesel AB, Martin A, Seidl T (2004) Smart Mater. Struct. 13:512

    Article  ADS  Google Scholar 

  11. Binnig G, Gerber C, Quate CF (1986) Phys. Rev. Lett. 56(9):930

    Article  PubMed  ADS  Google Scholar 

  12. Giessibl FJ (2003) Rev. Mod. Phys. 75:949

    Article  ADS  Google Scholar 

  13. C. Henkel, K. Joulain, e-print quant-ph/0407153

  14. Bruch LW (1983) Surf. Sci. 125:194

    Article  ADS  Google Scholar 

  15. Balykin VI, Letokhov VS, Ovchinnikov YB, Sidorov AI (1988) Phys. Rev. Lett. 60(21):2137

    Article  PubMed  ADS  Google Scholar 

  16. Shimizu F, Fujita J-I (2002) Phys. Rev. Lett. 88(12):123201

    Article  PubMed  ADS  Google Scholar 

  17. Lin Y-Y, Teper I, Chin C, Vuletić V (2004) Phys. Rev. Lett. 92(5):050404

    Article  PubMed  ADS  Google Scholar 

  18. McLachlan AD (1963) Proc. R. Soc. Lon. Ser.-A 271:387

    Article  ADS  MathSciNet  Google Scholar 

  19. McLachlan AD (1963) Mol. Phys. 7:381

    Article  ADS  Google Scholar 

  20. Tikochinsky Y, Spruch L (1993) Phys. Rev. A 48(6):4223

    Article  PubMed  ADS  Google Scholar 

  21. Wu S-T, Eberlein C (1999) Proc. R. Soc. Lon. Ser.-A 455:2487

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Zhou F, Spruch L (1995) Phys. Rev. A 52:297

    Article  PubMed  ADS  Google Scholar 

  23. Wylie JM, Sipe JE (1984) Phys. Rev. A 30:1185

    Article  ADS  Google Scholar 

  24. Jhe W (1991) Phys. Rev. A 43(11):5795

    Article  PubMed  ADS  Google Scholar 

  25. S.Y. Buhmann, Ho Trung Dung, T. Kampf D-G Welsch, Eur. Phys. J. D 35:15 (2005)

    Google Scholar 

  26. Buhmann SY, Kampf T, Welsch D-G (2005) Phys. Rev. A 72:032112

    Article  ADS  Google Scholar 

  27. Marvin AM, Toigo F (1982) Phys. Rev. A 25(2):782

    Article  ADS  Google Scholar 

  28. Girard C, Maghezzi S, Hache F (1989) J. Chem. Phys. 91:5509

    Article  ADS  Google Scholar 

  29. Boustimi M, Baudon J, Candori P, Robert J (2002) Phys. Rev. B 65:155402

    Article  ADS  Google Scholar 

  30. S.Y. Buhmann, Ho Trung Dung, D.-G. Welsch, J. Opt. B: Quantum Semiclass. Opt. 6:127 (2004)

    Google Scholar 

  31. S.Y. Buhmann, Ho Trung Dung, L. Knöll, D-G Welsch, Phys. Rev. A 70:052117

  32. Lifshitz EM (1956) Sov. Phys. JETP 2(1):73

    MathSciNet  Google Scholar 

  33. Parsegian VA (1974) Mol. Phys. 27(6):1503

    Article  ADS  Google Scholar 

  34. Schwinger J, DeRaad LL Jr, Milton KA (1978) Ann. Phys. 115(1):1

    Article  ADS  MathSciNet  Google Scholar 

  35. Milonni PW, Shih M-L (1992) Phys. Rev. A 45(7):4241

    Article  PubMed  ADS  Google Scholar 

  36. Kupiszewska D (1992) Phys. Rev. A 46(5):2286

    Article  PubMed  ADS  Google Scholar 

  37. Barton G (2001) J. Phys. A 34:4083

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. Raabe C, Welsch D-G (2005) Phys. Rev. A 71:013814

    Article  ADS  Google Scholar 

  39. Nijboer BRA, Renne MJ (1967) Chem. Phys. Lett. 1:317

    Article  ADS  Google Scholar 

  40. Renne MJ (1970) Physica 56:193

    Google Scholar 

  41. Renne MJ (1971) Physica 56:125

    Article  ADS  Google Scholar 

  42. Milonni PW, Lerner PB (1992) Phys. Rev. A 46(3):1185

    Article  PubMed  ADS  Google Scholar 

  43. Axilrod BM, Teller E (1943) J. Chem. Phys. 11(6):299

    Article  ADS  Google Scholar 

  44. Axilrod BM (1949) J. Chem. Phys. 17:1349

    Article  ADS  Google Scholar 

  45. Axilrod BM (1951) J. Chem. Phys. 19(6):719

    Article  ADS  Google Scholar 

  46. Aub MR, Zienau S (1960) Proc. R. Soc. Lon. Ser.-A 257:464

    Article  ADS  Google Scholar 

  47. Power EA, Thirunamachandran T (1985) Proc. R. Soc. Lon. Ser.-A 401:267

    Article  ADS  Google Scholar 

  48. Power EA, Thirunamachandran T (1994) Phys. Rev. A 50(5):3929

    Article  PubMed  ADS  Google Scholar 

  49. Cirone M, Passante R (1996) J. Phys. B 29:1871

    Article  ADS  Google Scholar 

  50. Knöll L, Scheel S, Welsch D-G (2001) In: Coherence and Statistics of Photons and Atoms, ed. by Peřina J. Wiley, New York p. 1

    Google Scholar 

  51. Jackson JD (1999) Classical Electrodynamics. Wiley, New York p 162

    MATH  Google Scholar 

  52. H. Safari, S.Y. Buhmann, Ho Trung Dung, D.-G. Welsch, in preparation

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.Y. Buhmann.

Additional information

PACS

12.20.-m; 34.50.Dy; 34.20.-b; 42.50.Nn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buhmann, S., Welsch, DG. Born expansion of the Casimir–Polder interaction of a ground-state atom with dielectric bodies. Appl. Phys. B 82, 189–201 (2006). https://doi.org/10.1007/s00340-005-2055-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-2055-3

Keywords

Navigation