Skip to main content
Log in

Experimental investigation of Risken–Nummedal–Graham–Haken laser instability in fiber ring lasers

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

It has been suggested (by Pessina et al. in 1997) that the observed spontaneous mode beating of erbium-doped-fiber ring lasers can be explained as the multimode instability described in 1968 by Risken and Nummedal and by Graham and Haken (the RNGH instability), which is based on Rabi-splitting-induced gain. If true, this would constitute the first ever example of this instability in an actual experiment. We test the hypothesis through a quantitative experimental investigation. We demonstrate that there is indeed a clear, marked onset of the instability, a fact that went unnoticed in all previous experiments because it is very close to the lasing threshold. We intentionally raise cavity loss to better separate onset of lasing and of instability. We obtain quantitative information on the instability onset. An interpretation as the predicted second threshold is reasonable provided inhomogeneous gain line broadening is taken into account. We also observe that instability above its onset exists only intermittently; this may hint at a subcritical bifurcation and noise-driven transitions. In any event, the RNGH mechanism is present, if not in a pure form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.O. Weiss, R. Vilaseca: Dynamics of Lasers (VCH, Weinheim 1991)

  2. Ya.I. Khanin: Principles of Laser Dynamics (Elsevier, Amsterdam 1995)

  3. P. Mandel: Theoretical Problems in Cavity Nonlinear Optics (Cambridge University Press, Cambridge 1997)

  4. O. Svelto: Principles of Lasers (Plenum, New York 1989)

  5. H. Risken, K. Nummedal: Phys. Lett. A 26, 275 (1968)

    Article  Google Scholar 

  6. H. Risken, K. Nummedal: J. Appl. Phys. 39, 4662 (1968)

    Article  Google Scholar 

  7. R. Graham, H. Haken: Z. Phys. 213, 420 (1968)

    Google Scholar 

  8. F. Fontana, M. Begotti, E.M. Pessina, L.A. Lugiato: Opt. Commun. 114, 89 (1995)

    Google Scholar 

  9. E.M. Pessina, G. Bonfrate, F. Fontana, L.A. Lugiato: Phys. Rev. A 56, 4086 (1997)

    Article  Google Scholar 

  10. Q.L. Williams, J. Garcia-Ojalvo, R. Roy: Phys. Rev. A 55, 2376 (1997)

    Article  Google Scholar 

  11. E. Roldán, G.J. de Valcárcel: Europhys. Lett. 43, 255 (1998)

    Article  Google Scholar 

  12. E.M. Pessina, F. Prati, J. Redondo, E. Roldán, G.J. de Valcárcel: Phys. Rev. A 60, 2517 (1999)

    Article  Google Scholar 

  13. T.-M. Voigt, M.O. Lenz, F. Mitschke: Proc. SPIE 4429, 112 (2000)

    Google Scholar 

  14. L.A. Lugiato, L.M. Narducci, E.V. Eschenazi, D.K. Bandy, N.B. Abraham: Phys. Rev. A 32, 1563 (1985)

    Article  Google Scholar 

  15. G.J. de Valcárcel, E. Roldán, F. Prati: Opt. Commun. 163, 5 (1999)

    Article  Google Scholar 

  16. E. Roldán, G.J. de Valcárcel, F. Mitschke: Appl. Phys. B 76, 741 (2003)

    Article  Google Scholar 

  17. P. Franco, M. Midrio, A. Tozzato, M. Romagnoli, F. Fontana: J. Opt. Soc. Am. B 11, 1090 (1994)

    Google Scholar 

  18. K. Tamura, H.A. Haus, E.P. Ippen: Electron. Lett. 28, 2226 (1992)

    Google Scholar 

  19. F. Fontana, E. Pessina: private communication

  20. G.P. Agrawal: Nonlinear Fiber Optics (Academic, San Diego 1995)

  21. E. Roldan, G.J. de Valcárcel, F. Silva, F. Prati: J. Opt. Soc. Am. B 18, 1601 (2001)

    Google Scholar 

  22. F. Prati, E.M. Pessina, E. Roldán, G.J. de Valcárcel: Opt. Commun., in print

  23. E. Roldán, G.J. de Valcárcel: Phys. Rev. A 64, 053805 (2001)

    Article  Google Scholar 

  24. Equations (14) and (30) in [23] can be applied to three-level lasers by substituting α in (30) by α/(1+W)1/2 and by taking into account that r in (14) relates to W through (16) in [23]. This does not take into account distributed losses. In order to take them into account, the relation between r and W is not that of (16) in [23] but W=[G0+(1+u)(γd+|lnR|)r]/[G0-(1+u)(γd+|lnR|)r], where u=γinh is the inhomogeneous to homogeneous broadening ratio. The lasing threshold occurs at r=1. Notice that the symbol r entering the above equation does not have the same meaning as the one used in the present article: in [23], and in the above equation, r represents the normalized pump in a two-level laser

  25. J.F. Urchueguia, G.J. de Valcárcel, E. Roldán, F. Prati: Phys. Rev. A 62, 041801(R) (2000)

    Article  Google Scholar 

  26. M.J. Guy, J.R. Taylor, R. Kashyap: Electron. Lett. 31, 1924 (1995)

    Article  Google Scholar 

  27. J.L. Zhang, C.Y. Yue, G.W. Schinn, W.R.L. Clements, J.W.Y. Lit: IEEE J. Lightwave Technol. 14, 104 (1996)

    Article  MATH  Google Scholar 

  28. D.I. Chang, M.J. Guy, S.V. Chernikov, J.R. Taylor, H.J. Kong: Electron. Lett. 32, 1786 (1996)

    Article  Google Scholar 

  29. H. Fu: Phys. Rev. A 40, 1868 (1989)

    Article  Google Scholar 

  30. T.W. Carr, Th. Erneux: Phys. Rev. A 50, 724 (1994); Phys. Rev. A 50, 4219 (1994)

    Article  Google Scholar 

  31. The reader may wonder why we have not tried to test this hypothesis by numerical integration of the model in [23]. As discussed elsewhere [22, 33], the numerical integration for class B lasers is extremely difficult because of the enormous stiffness of the problem. In fact, the first numerical integrations of the Maxwell–Bloch equations with inhomogeneous broadening in the uniform-field limit have been carried out only very recently [22], and much work needs to be done in this direction. In any case, there is numerical evidence that, with inhomogeneous broadening, the RNGHI can also be subcritical (F. Prati, Universitá dell’Insubria, private communication)

  32. A. Amon, M. Nizette, M. Lefranc, T. Erneux: Phys. Rev. A 68, 023801 (2003)

    Article  Google Scholar 

  33. G.J. de Valcárcel, E. Roldán, F. Prati: J. Opt. Soc. Am. B 20, 825 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Mitschke.

Additional information

PACS

42.65.Sf; 42.60.Mi; 42.55.Wd

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voigt, T., Lenz, M., Mitschke, F. et al. Experimental investigation of Risken–Nummedal–Graham–Haken laser instability in fiber ring lasers. Appl Phys B 79, 175–183 (2004). https://doi.org/10.1007/s00340-004-1531-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-004-1531-5

Keywords

Navigation