Skip to main content
Log in

Flexible painted metasurface using conductive silver ink for scattering fields digital manipulation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Printed circuit board (PCB) fabrication technology has been widely used in metasurfaces in microwave domain. However, such technology still needs a non-negligible fabricating period and cost. To further explore the ultra-low-cost, convenient processing and fast demonstrating method, we present a metasurface using silver ink to produce the digital patterns for abundant scattering field manipulation. By directly painting the conductive ink on the paper to establish the specific metal structure, arbitrary EM properties can be designed, which could be regarded as a manually convenient PCB technology for metasurface fabrication. We design eight coding sequences to, respectively, generate single- and dual beam fields with different scattering angles. Simulations and measurements show good agreements, verifying the feasibility of our design method. We believe the presented metasurface processing method will promote the interests on flexible metasurface design and further stimulate related domain like wireless communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Alu, Mantle cloak: invisibility induced by a surface Phys. Rev. B 80(24), (2009). doi: https://doi.org/10.1103/PhysRevB.80.245115 (Art no. 245115)

  2. Q. Ma, Z.L. Mei, S.K. Zhu, T.Y. Jin, T.J. Cui, Experiments on active cloaking and illusion for Laplace equation. Phys. Rev. Lett. 111(17) (2013). doi: https://doi.org/10.1103/PhysRevLett.111.173901 (Art no. 173901)

  3. X. Ni, Z.J. Wong, M. Mrejen, Y. Wang, X. Zhang, An ultrathin invisibility skin cloak for visible light. Science 349(6254), 1310–1314 (2015). https://doi.org/10.1126/science.aac9411

    Article  ADS  Google Scholar 

  4. Q. Ma, F. Yang, T.Y. Jin, Z.L. Mei, T.J. Cui, "Open active cloaking and illusion devices for the Laplace equation. J. Opt. 18(4), 044004 (2016). https://doi.org/10.1088/2040-8978/18/4/044004

    Article  ADS  Google Scholar 

  5. N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens. Science 308(5721), 534–537 (2005). https://doi.org/10.1126/science.1108759

    Article  ADS  Google Scholar 

  6. Q. Ma, C.B. Shi, T.Y. Chen, M.Q. Qi, Y.B. Li, T.J. Cui, Broadband metamaterial lens antennas with special properties by controlling both refractive-index distribution and feed directivity. J. Opt. 20(4), 045101 (2018). https://doi.org/10.1088/2040-8986/aaacbf

    Article  ADS  Google Scholar 

  7. X. Zou et al., Imaging based on metalenses. PhotoniX 1(1), 2 (2020). doi: https://doi.org/10.1186/s43074-020-00007-9.

  8. D. Wang, C. Liu, C. Shen, Y. Xing, Q.-H. Wang, Holographic capture and projection system of real object based on tunable zoom lens. PhotoniX 1(1), 6 (2020). doi: https://doi.org/10.1186/s43074-020-0004-3.

  9. X. Ding et al., Metasurface holographic image projection based on mathematical properties of Fourier transform. PhotoniX 1(1),16 (2020). doi: https://doi.org/10.1186/s43074-020-00016-8.

  10. Q. Ma, C.B. Shi, G.D. Bai, T.Y. Chen, A. Noor, T.J. Cui, Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit. Adv. Opt. Mater. 5(23). doi: https://doi.org/10.1002/adom.201700548 (Art no. 1700548)

  11. X. Yin, Z. Ye, J. Rho, Y. Wang, X. Zhang, Photonic spin Hall effect at metasurfaces. Science 339(6), 1405–1407, 2013. Available: https://science.sciencemag.org/content/sci/339/6126/1405.full.pdf

  12. T.J. Cui, M.Q. Qi, X. Wan, J. Zhao, Q. Cheng, Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 3(10), e218 (2014). doi: https://doi.org/10.1038/lsa.2014.99 (Art no. e218)

  13. Q. Ma, T.J. Cui, Information metamaterials: bridging the physical world and digital world. PhotoniX 1(1), 1–32 (2020). https://doi.org/10.1186/s43074-020-00006-w

    Article  MathSciNet  Google Scholar 

  14. T.J. Cui et al., Information metamaterial systems. Iscience 23(8), 101403 (2020)

    Article  ADS  Google Scholar 

  15. L. Chen, Q. Ma, H.B. Jing, H.Y. Cui, Y. Liu, T.J. Cui, Space-energy digital-coding metasurface based on an active amplifier. Phys. Rev. Appl. 11(5), 6 (2019). doi: https://doi.org/10.1103/PhysRevApplied.11.054051 (Art no. 054051)

  16. Q. Ma et al., Editing arbitrarily linear polarizations using programmable metasurface. Phys. Rev. Appl. 13(2), 021003 (2020). doi: https://doi.org/10.1103/PhysRevApplied.13.021003

  17. L. Chen et al., Dual-polarization programmable metasurface modulator for near-field information encoding and transmission. Photonics Res. 9(2) (2021). doi: https://doi.org/10.1364/prj.412052.

  18. Y. Shuang, H. Zhao, W. Ji, T.J. Cui, L. Li, Programmable high-order OAM-carrying beams for direct-modulation wireless communications. IEEE J. Emerg. Selected Topics Circ. Syst. 10(1), 29–37 (2020). https://doi.org/10.1109/jetcas.2020.2973391

    Article  ADS  Google Scholar 

  19. Q. Ma et al., Controllable and programmable nonreciprocity based on detachable digital coding metasurface. Adv. Opt. Mater. 7(24), 1901285 (2019). doi: https://doi.org/10.1002/adom.201901285

  20. Q. Ma, G.D. Bai, H.B. Jing, C. Yang, L. Li, T.J. Cui, Smart metasurface with self-adaptively reprogrammable functions. Light Sci. Appl. 8(1), 98 (2019). https://doi.org/10.1038/s41377-019-0205-3

    Article  ADS  Google Scholar 

  21. Q. Ma et al., Smart sensing metasurface with self-defined functions in dual polarizations. Nanophotonics 9(10), 3271–3278 (2020). https://doi.org/10.1515/nanoph-2020-0052

    Article  Google Scholar 

  22. A. Grbic, G.V. Eleftheriades, Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys. Rev. Lett. 92(11) (2004). doi: https://doi.org/10.1103/PhysRevLett.92.117403 (Art no. 117403)

  23. D. Schurig et al., Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801), 977–980 (2006). https://doi.org/10.1126/science.1133628

    Article  MathSciNet  ADS  Google Scholar 

  24. R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292(5514), 77–79 (2001). https://doi.org/10.1126/science.1058847

    Article  ADS  Google Scholar 

  25. O. R. Bilal et al., A flexible spiraling-metasurface as a versatile haptic interface. Adv. Mater. Technol. doi: https://doi.org/10.1002/admt.202000181 (Art no. 2000181)

  26. C.-Y. Chang et al., Flexible localized surface plasmon resonance sensor with metal-insulator-metal nanodisks on PDMS substrate. Sci. Rep. 8 (2018). doi: https://doi.org/10.1038/s41598-018-30180-8 (Art no. 11812)

  27. S. Chejarla, S.R. Thummaluru, R.K. Chaudhary, Flexible metamaterial absorber with wide incident angle insensitivity for conformal applications. Electron. Lett. 55(3), 133–134 (2019). https://doi.org/10.1049/el.2018.7501

    Article  ADS  Google Scholar 

  28. J. Sidén, M.K. Fein, A. Koptyug, H.E. Nilsson, Printed antennas with variable conductive ink layer thickness. IET Microw. Antennas Propag. 1(2) (2007), doi: https://doi.org/10.1049/iet-map:20060021.

  29. A. Rida, Y. Li, R. Vyas, M.M. Tentzeris, Conductive inkjet-printed antennas on flexible low-cost paper-based substrates for RFID and WSN applications. IEEE Antennas Propag. Mag. 51(3), 13–23 (2009). https://doi.org/10.1109/map.2009.5251188

    Article  ADS  Google Scholar 

  30. A.M. Mansour, N. Shehata, B.M. Hamza, M.R.M. Rizk, Efficient design of flexible and low cost paper-based inkjet-printed antenna. Int. J. Antennas Propag. 2015, 1–6 (2015). https://doi.org/10.1155/2015/845042

    Article  Google Scholar 

  31. Y. Lee, C.H. Kim, D.Y. Shin, Y.G. Kim, Printed UHF RFID antennas with high efficiencies using nano-particle silver ink. J Nanosci. Nanotechnol. 11(7), 6425–6428 (2011). https://doi.org/10.1166/jnn.2011.4390

    Article  Google Scholar 

  32. H. Koga, T. Inui, I. Miyamoto, T. Sekiguchi, M. Nogi, K. Suganuma, A high-sensitivity printed antenna prepared by rapid low-temperature sintering of silver ink. RSC Adv. 6(87), 84363–84368 (2016). https://doi.org/10.1039/c6ra19687j

    Article  ADS  Google Scholar 

  33. R. Zichner, R.R. Baumann, Printed antennas: from theory to praxis, challenges and applications. Adv. Radio Sci. 11, 271–276 (2013). https://doi.org/10.5194/ars-11-271-2013

    Article  ADS  Google Scholar 

  34. H.K. Kim, D. Lee, S. Lim, A fluidically tunable metasurface absorber for flexible large-scale wireless ethanol sensor applications. Sensors (Basel) 16(8) (2016) doi: https://doi.org/10.3390/s16081246

  35. S. Jun et al., Circular polarised antenna fabricated with low-cost 3D and inkjet printing equipment. Electron. Lett. 53(6), 370–371 (2017). https://doi.org/10.1049/el.2016.4605

    Article  ADS  Google Scholar 

  36. E. Li, XJ. Li, B.-C. Seet, X. Lin, Ink-printed flexible wideband dipole array antenna for 5G applications. Phys. Commun. 43 (2020). doi: https://doi.org/10.1016/j.phycom.2020.101193

  37. W.G. Whittow et al., Inkjet-printed microstrip patch antennas realized on textile for wearable applications. IEEE Antennas Wirel. Propag. Lett. 13, 71–74 (2014). https://doi.org/10.1109/lawp.2013.2295942

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No.62001232, 11404207), Jiangsu Provincial Natural Science Foundation of China (Grant No. BK20180457), SHIEP Foundation K2014-054 and Z2015-086, the Local Colleges and Universities Capacity Building Program of the Shanghai Science and Technology Committee, China (Grant Nos. 15110500900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Luo, S.S., Ye, F.J. et al. Flexible painted metasurface using conductive silver ink for scattering fields digital manipulation. Appl. Phys. A 127, 666 (2021). https://doi.org/10.1007/s00339-021-04800-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04800-6

Keywords

Navigation