Skip to main content
Log in

SnS quantum dots with different sizes in active layer for enhancing the performance of perovskite solar cells

  • T.C. : Solar Energy Materials and Applications
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Because of the special low-dimensional physical properties of quantum dots (QDs) and the excellent optoelectronic properties of perovskite, the combination of perovskite solar cells (PSCs) and QDs may largely be one of the breakthroughs in device performance. However, little attention has been paid to the effect of the size of QDs on device performance except for bandgap tuning. In this work, non-toxic SnS QDs of different sizes were prepared by varying the reaction temperature of the thermal injection method. Their optical bandgaps with sizes were investigated, and they were implanted into the active layers of the carbon-based PSCs without hole transport layer. The effects of implanting SnS QDs with different sizes on the perovskite film quality and PSCs performance were studied. The cells implanted with SnS QDs of the best size (average 6.9 nm) achieved a photoelectric conversion efficiency of 14.26%, reaching a 12.42% improvement. The improved performance was mainly attributed to the presence of SnS QDs, which provided more nucleation sites for the growth of perovskite grains, and contributed to better quality perovskite films (including higher crystallinity, increased grain numbers and fewer surface defects), thus improving the light utilization, accelerating carrier transfer and reducing carrier recombination in the active layers. The successful implantation of QDs with different sizes in this paper has facilitated the development of the combination of perovskite and QDs in mesoporous PSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)

    Article  Google Scholar 

  2. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser et al., Sci. Rep. 2, 1 (2012)

    Google Scholar 

  3. M. Liu, M.B. Johnston, H.J. Snaith, Nature 501, 395 (2013)

    Article  ADS  Google Scholar 

  4. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang et al., Science 345, 295 (2014)

    Article  ADS  Google Scholar 

  5. S. Yakunin, L. Protesescu, F. Krieg, M.I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, M.V. Kovalenko, Nat. Commun. 6, 1 (2015)

    Google Scholar 

  6. G. Xing, B. Wu, X. Wu, M. Li, B. Du, Q. Wei, J. Guo, E.K. Yeow, T.C. Sum, W. Huang, Nat. Commun. 8, 14558 (2017)

    Article  ADS  Google Scholar 

  7. The best research‐cell efficiency chart from National Renewable Energy Laboratory (NREL), https://www.nrel.gov/pv/cell-efficiency.html. Accessed Sept. 2020.

  8. G.H. Carey, A.L. Abdelhady, Z. Ning, S.M. Thon, O.M. Bakr, E.H. Sargent, Chem. Rev. 115, 12732 (2015)

    Article  Google Scholar 

  9. T.T. Ngo, I. Suarez, R.S. Sanchez, J.P. Martinez-Pastor, I. Mora-Sero, Nanoscale 8, 14379 (2016)

    Article  ADS  Google Scholar 

  10. J. Han, X. Yin, H. Nan, Y. Zhou, Z. Yao, J. Li, D. Oron, H. Lin, Small 13, 1700953 (2017)

    Article  Google Scholar 

  11. H. Zou, D. Guo, B. He, J. Yu, K. Fan, Appl. Surf. Sci. 430, 625 (2018)

    Article  ADS  Google Scholar 

  12. P. Wang, J. Xie, K. Xiao, H. Hu, C. Cui, Y. Qiang, P. Lin, V. Arivazhagan, L. Xu, Z. Yang et al., ACS Appl. Mater. Interfaces 10, 22320 (2018)

    Article  Google Scholar 

  13. J. Han, S. Luo, X. Yin, Y. Zhou, H. Nan, J. Li, X. Li, D. Oron, H. Shen, H. Lin, Small 14, 1801016 (2018)

    Article  Google Scholar 

  14. X. Zeng, T. Zhou, C. Leng, Z. Zang, M. Wang, W. Hu, X. Tang, S. Lu, L. Fang, M. Zhou, J. Mater. Chem. A 5, 17499 (2017)

    Article  Google Scholar 

  15. J. Zhang, T. Tong, L. Zhang, X. Li, H. Zou, J. Yu, A.C.S. Sustain, Chem. Eng. 6, 8631 (2018)

    Google Scholar 

  16. H. Li, W. Shi, W. Huang, E.-P. Yao, J. Han, Z. Chen, S. Liu, Y. Shen, M. Wang, Y. Yang, Nano Lett. 17, 2328 (2017)

    Article  ADS  Google Scholar 

  17. J. Xie, K. Huang, X. Yu, Z. Yang, K. Xiao, Y. Qiang, X. Zhu, L. Xu, P. Wang, C. Cui, ACS Nano 11, 9176 (2017)

    Article  Google Scholar 

  18. Z. Yang, A. Janmohamed, X. Lan, F.P. García de Arquer, O. Voznyy, E. Yassitepe, G.-H. Kim, Z. Ning, X. Gong, R. Comin et al., Nano Lett. 15, 7539 (2015)

    Article  ADS  Google Scholar 

  19. J. Peng, Y. Chen, X. Zhang, A. Dong, Z. Liang, Adv. Sci. 3, 1500432 (2016)

    Article  Google Scholar 

  20. L.A. Burton, A. Walsh, J. Phys. Chem. C 116, 24262 (2012)

    Article  Google Scholar 

  21. Y. Oda, H. Shen, L. Zhao, J. Li, M. Iwamoto, H. Lin, Sci. Technol. Adv. Mater. 15, 035006 (2014)

    Article  Google Scholar 

  22. J. Rath, C. Prastani, D. Nanu, M. Nanu, R. Schropp, A. Vetushka, M. Hỳvl, A. Fejfar, Phys. Status Solidi B 251, 1309 (2014)

    Article  ADS  Google Scholar 

  23. T. Sajeesh, K. Deepa, and K. Vijayakumar, In AIP Conference Proceedings (AIP Publishing LLC) 080029 (2017).

  24. H. Su, Y. Xie, Y. Xiong, P. Gao, Y. Qian, J. Solid State Chem. 161, 190 (2001)

    Article  ADS  Google Scholar 

  25. M. Khadraoui, N. Benramdane, C. Mathieu, A. Bouzidi, R. Miloua, Z. Kebbab, K. Sahraoui, R. Desfeux, Solid State Commun. 150, 297 (2010)

    Article  ADS  Google Scholar 

  26. K. Deepa, J. Nagaraju, Mater. Sci. Semicond. Process. 27, 649 (2014)

    Article  Google Scholar 

  27. H. Li, M. Li, H. Kan, C. Li, A. Quan, C. Fu, J. Luo, X. Liu, W. Wang, Z. Yang et al., Surf. Coat. Technol. 362, 78 (2019)

    Article  Google Scholar 

  28. M. Parenteau, C. Carlone, Phys. Rev. B 41, 5227 (1990)

    Article  ADS  Google Scholar 

  29. Q. Dong, Y. Yuan, Y. Shao, Y. Fang, Q. Wang, J. Huang, Energy Environ. Sci. 8, 2464 (2015)

    Article  Google Scholar 

  30. Y. Deng, E. Peng, Y. Shao, Z. Xiao, Q. Dong, J. Huang, Energy Environ. Sci. 8, 1544 (2015)

    Article  Google Scholar 

  31. C.V. Thompson, Annu. Rev. Mater. Sci. 30, 159 (2000)

    Article  ADS  Google Scholar 

  32. G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Science 342, 344 (2013)

    Article  ADS  Google Scholar 

  33. P.-W. Liang, C.-Y. Liao, C.-C. Chueh, F. Zuo, S.T. Williams, X.-K. Xin, J. Lin, A.K.-Y. Jen, Adv. Mater. 26, 3748 (2014)

    Article  Google Scholar 

  34. M. Ran, N. Liu, H. Yang, R. Meng, M. Chen, H. Lu, Y. Yang, Appl. Phys. Lett. 116, 113503 (2020)

    Article  ADS  Google Scholar 

  35. N. Liu, M. Chen, H. Yang, M. Ran, C. Zhang, X. Luo, H. Lu, Y. Yang, Opt. Mater. Express 10, 157 (2020)

    Article  ADS  Google Scholar 

  36. H. Yang, N. Liu, M. Ran, Z. He, R. Meng, M. Chen, H. Lu, Y. Yang, J. Mater. Sci. Mater. Electron. 31, 3603 (2020)

    Article  Google Scholar 

  37. S.N. Habisreutinger, T. Leijtens, G.E. Eperon, S.D. Stranks, R.J. Nicholas, H.J. Snaith, Nano Lett. 14, 5561 (2014)

    Article  ADS  Google Scholar 

  38. X. Zhao, N.-G. Park, Photonics (Multidisciplinary Digital Publishing Institute) 2, 1139 (2015)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (NSFC) (11704293, 11974266), the Fundamental Research Funds for the Central Universities under Grant WUT (2020IB022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingping Yang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., He, Z., Meng, R. et al. SnS quantum dots with different sizes in active layer for enhancing the performance of perovskite solar cells. Appl. Phys. A 127, 317 (2021). https://doi.org/10.1007/s00339-021-04474-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04474-0

Keywords

Navigation