Skip to main content
Log in

Structural variations during aging of the particles synthesized by laser ablation of copper in water

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The formation of particles during ablation of copper (Cu) in distilled water by different pulse duration (5 ns, 200 ps and 30 fs), wavelength (1064 and 355 nm of 5 ns pulses), and energy is demonstrated. It is found that the initial particles of Cu rapidly oxidize to form cupric oxide (CuO) and cuprous oxide (Cu2O) particles. Pulse duration and wavelength play a crucial role during the process of formation, morphology change, and aging of particles. We demonstrate that ultra-short pulses allow obtaining particles with smaller sizes and narrower distribution. It is shown that the morphology of CuO/Cu2O particles in this case becomes more stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F. Pincella, K. Isozaki, K. Miki, Light Sci Appl 3, e133 (2014)

    ADS  Google Scholar 

  2. O. Blum and N. T. Shaked, Light: Sci Appl 4, e322 (2015)

  3. R.A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, H. Kuroda, J. Phys. B 41, 045603 (2008)

    ADS  Google Scholar 

  4. I.A. Sukhov, G.A. Shafeev, V.V. Voronov, M. Sygletou, E. Stratakis, C. Fotakis, Appl. Surf. Sci. 302, 79–82 (2014)

    ADS  Google Scholar 

  5. P.K. Shrestha, Y.T. Chun, D. Chu, Light Sci. Appl. 4, e259 (2015)

    ADS  Google Scholar 

  6. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, Chem. Rev. 108, 2064–2110 (2008)

    Google Scholar 

  7. X. Chen, B. Jia, Y. Zhang, M. Gu, Light Sci. Appl. 2, e92 (2013)

    ADS  Google Scholar 

  8. R.A. Ganeev, High-order harmonic generation in laser plasma plumes (Imperial College Press, London, 2012)

    Google Scholar 

  9. M. Gu, H. Bao, X. Gan, N. Stokes, J. Wu, Light Sci. Appl. 3, e126 (2014)

    ADS  Google Scholar 

  10. O.L. Muskens, L. Bergamini, Y. Wang, J.M. Gaskell, N. Zabala, C.H. de Groot, Light Sci. Appl. 5, e16173 (2016)

    Google Scholar 

  11. R.A. Ganeev, A.I. Ryasnyansky, A.L. Stepanov, T. Usmanov, Phys. Stat. Sol. B 241, R1–R4 (2004)

    ADS  Google Scholar 

  12. G. Lozano, S.R. Rodriguez, M.A. Verschuuren, J. Gomez Rivas, Light Sci. Appl. 5, e16080 (2016)

    ADS  Google Scholar 

  13. Y.-H. Su, Y.-F. Ke, S.-L. Cai, Q.-Y. Yao, Light Sci. Appl. 1, e14 (2012)

    Google Scholar 

  14. H. Xie, R.S. Joshya, J. Yang, C. Guo, Opt Mater Express 9, 2994 (2019)

    ADS  Google Scholar 

  15. N. Acacia, F. Barreca, E. Barletta, D. Spadaro, G. Currò, F. Neri, Appl. Surf. Sci. 256, 6918–6922 (2010)

    ADS  Google Scholar 

  16. Y.-S. Lin, W.-C. Hsu, K.-C. Huang, J.A. Yeh, Appl. Surf. Sci. 258, 2–6 (2011)

    ADS  Google Scholar 

  17. K. Zhang, D.S. Ivanov, R.A. Ganeev, G.S. Boltaev, P.S. Krishnendu, S.C. Singh, Nanomaterials 9, 1–19 (2019)

    Google Scholar 

  18. Z.Y. Zhang, H.M. Xiong, Materials 8, 3101–3127 (2015)

    ADS  Google Scholar 

  19. E.G. Goh, X. Xu, P.G.M. Cormick, Scripta Mater. 78, 49–52 (2014)

    Google Scholar 

  20. G.-H. Fan, S.-L. Qu, Z.-Y. Guo, Q. Wang, Z.-G. Li, Chin. Phys. B 21, 047804 (2012)

    ADS  Google Scholar 

  21. K. Wang, H. Long, M. Fu, G. Yang, P. Lu, Opt. Express 18, 13874–13879 (2010)

    ADS  Google Scholar 

  22. T. Yamamoto, Solid State Ionics 172, 299–302 (2004)

    Google Scholar 

  23. J. Liu, X. Huang, Y. Li, K.M. Sulieman, X. He, F. Sun, Cryst. Growth Des. 6, 1690–1696 (2006)

    Google Scholar 

  24. H. Zeng, W. Cai, Y. Li, J. Hu, P. Liu, J. Phys. Chem. B 109, 18260–18266 (2005)

    Google Scholar 

  25. J.M.J. Santillán, F.A. Videla, M.B. Fernández van Raap, D.C. Schinca, L.B. Scaffardi, J. Appl. Phys. 113, 134305 (2013)

    ADS  Google Scholar 

  26. V.V. Kislyuk, O.P. Dimitriev, J. Nanosci Nanotech. 8, 131–148 (2008)

    Google Scholar 

  27. T. Karali, N. Can, L. Valberg, A.L. Stepanov, P.D. Townsend, Ch. Buchal, R.A. Ganeev, A.I. Ryasnyansky, H.G. Belik, M.L. Jessett, C. Ong, Phys. B 363, 88–95 (2005)

    ADS  Google Scholar 

  28. G. Wang, J. Huang, S. Chen, Y. Gao, D. Cao, J. Power Sources 196, 5756–5760 (2011)

    ADS  Google Scholar 

  29. S.B. Wang, C.H. Hsiao, S.J. Chang, K.T. Lam, K.H. Wen, S.C. Hung, Sens. Actuators A Phys. 171, 207–211 (2011)

    Google Scholar 

  30. Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, Prog. Mater Sci. 60, 208–337 (2014)

    Google Scholar 

  31. R.A. Ganeev, A.I. Ryasnyansky, A.L. Stepanov, T. Usmanov, Phys. Stat. Sol. B 241, 935–944 (2004)

    ADS  Google Scholar 

  32. Y. Zhang, S. Wang, X. Li, L. Chen, Y. Qian, Z. Zhang, J. Cryst. Growth 291, 196–201 (2006)

    ADS  Google Scholar 

  33. N.G. Semaltianos, Crit. Rev. Solid State Mater. Sci. 35, 105–124 (2010)

    ADS  Google Scholar 

  34. M.A. Gondal, A.M. Ilyas, U. Baig, Ceram. Int. 42, 13151–13160 (2016)

    Google Scholar 

  35. K. Zhang, S.K. Maurya, R.A. Ganeev, K.S. Rao, C. Guo, J. Opt. 20, 125502 (2018)

    ADS  Google Scholar 

  36. V. Svetlichnyi, A. Shabalina, I. Lapin, D. Goncharova, A. Nemoykina, Appl. Surf. Sci. 372, 20–29 (2016)

    ADS  Google Scholar 

  37. M. Castro-Lopez, D. Brinks, R. Sapienza, N.F. van Hulst, Nano Lett. 11, 4674–4678 (2011)

    ADS  Google Scholar 

  38. D.A. Goncharova, I.N. Lapin, E.S. Savelyev, V.A. Svetlichnyi, Russian Phys. J. 60, 1197–1205 (2017)

    ADS  Google Scholar 

  39. D. M. Arboleda, J. M. J. Santillán, L. J. M. Herrera, M. B. F. V. Raap, D. Muraca, D. C. Schinca, Plasmonics: Metallic Nanostructures & Their Optical Properties XIII (2015)

  40. M.A. Gondal, T.F. Qahtan, M.A. Dastageer, Y.W. Maganda, D.H. Anjum, J. Nanosci. Nanotechn. 13, 5759–5766 (2013)

    Google Scholar 

  41. K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, M. Obara, Appl. Phys. A 69, S359–S366 (1999)

    ADS  Google Scholar 

  42. A. Nath, A. Khare, J. Appl. Phys. 110, 9111 (2011)

    Google Scholar 

  43. S. Hamad, G.K. Podagatlapalli, S.P. Tewari, S.V. Rao, Pramana 82, 331–337 (2014)

    ADS  Google Scholar 

  44. A. Hamad, L. Li, Z. Liu, Appl. Phys. A 120, 1247–1260 (2015)

    ADS  Google Scholar 

  45. B. Al-Jumaili, Z. Talib, A. Zakaria, A. Ramizy, N. Ahmed, S. Paiman, J. Ying, I. Muhd, H. Baqiah, Appl. Phys. A 124, 577 (2018)

    ADS  Google Scholar 

  46. M. Gondal, T. Qahtan, M. Dastageer, Y. Maganda, D. Anjum, J. Nanosci. Nanotech 13, 5759–5766 (2013)

    Google Scholar 

  47. H.J. Jung, Y. Yu, M.Y. Choi, B. Korean Chem. Soc 36, 3–4 (2015)

    Google Scholar 

  48. B. Oktem, I. Pavlov, S. Ilday, H. Kalaycıoglu, A. Rybak, S. Yavas, M. Erdogan, F. Ilday, Nat. Photonics 7, 897 (2013)

    ADS  Google Scholar 

  49. S. Hamad, G. Podagatlapalli, S. Ptewari, S.V. Rao, Pramana-J. Phys. 82, 331–337 (2014)

    ADS  Google Scholar 

  50. P.K. Raul, S. Senapati, A.K. Sahoo, I.M. Umlong, R.R. Devi, A.J. Thakur, V. Veer, RSC Adv. 4, 40580–40587 (2014)

    Google Scholar 

  51. J. Singh, G. Kaur, M. Rawat, J. Bioelectron. Nanotechnol. 1, 9 (2016)

    Google Scholar 

  52. A. Hamad, L. Li, Z. Liu, Appl. Phys. A 122, 904 (2016)

    ADS  Google Scholar 

  53. E. Stratakis, M. Barberoglou, C. Fotakis, G. Viau, C. Garcia, G.A. Shafeev, Opt. Express 17, 12650 (2009)

    ADS  Google Scholar 

  54. U. Kreibig, M. Vollmer, Optical properties of metal clusters (Springer, Berlin, 1995)

    Google Scholar 

  55. R.A. Ganeev, G.S. Boltaev, R.I. Tugushev, T. Usmanov, Appl. Phys. A 100, 119–123 (2010)

    ADS  Google Scholar 

  56. M. Hashida, A. Semerok, O. Gobert, G. Petite, Y. Izawa, J.F. Wagner, Appl. Surf. Sci. 197–198, 862–867 (2002)

    ADS  Google Scholar 

  57. H. Ehrenreich, H.R. Philipp, Phys. Rev. 128, 1622–1629 (1962)

    ADS  Google Scholar 

  58. A. Oliver, J.C.C. Wong, J. Roiz, J.M. Hernández, L.R. Fernández, A. Crespos, Nucl. Instrum. Methods Phys. Res. B 175, 495 (2001)

    ADS  Google Scholar 

  59. L. Kleinman, K. Mednick, Phys. Rev. B 21, 1549–1553 (1980)

    ADS  Google Scholar 

  60. W.Y. Ching, Y.N. Xu, K.W. Wong, Phys. Rev. B 40, 7684–7695 (1989)

    ADS  Google Scholar 

  61. R.K. Swarnkar, S.C. Sigh, R. Gopal, Bull. Mater. Sci. 34, 1363–1369 (2011)

    Google Scholar 

  62. H.J. Jung, R. Koutavarapu, S. Lee, J.H. Kim, H.C. Choi, M.Y. Choi, J. Environ. Sci. 74, 107–115 (2018)

    Google Scholar 

  63. T. Sakka, S. Masai, K. Fukami, Y.H. Ogata, Spectrochimica Acta Part B 64, 981–985 (2009)

    ADS  Google Scholar 

  64. V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 11, 3805–3821 (2009)

    Google Scholar 

  65. Z. Zhang, H. Sun, X. Shao, D. Li, H. Yu, M. Han, Adv. Mater. 17, 42–47 (2005)

    Google Scholar 

  66. I. Vladoiu, M. Stafe, C. Negutu, I.M. Popescu, J. Optoelectron Adv Mater 10, 3177–3181 (2008)

    Google Scholar 

  67. S. Sun, X. Zhang, Y. Sun, S. Yang, X. Song, Z. Yang, ACS Appl. Mater. Interfaces. 5, 4429–4437 (2013)

    Google Scholar 

  68. H.J. Jung, Y. Yu, M.Y. Choi, B Korean Chem. S 36, 3–4 (2015)

    Google Scholar 

  69. H. Khalid, S. Ghani, S. Shamaila, H. Saba, N. Zafar, R. Sharif, Acta Metall. Sin. 29, 748–754 (2016)

    Google Scholar 

  70. S. Sun, X. Zhang, Y. Sun, J. Zhang, S. Yang, X. Song, RSC Adv. 3, 13712 (2013)

    Google Scholar 

  71. R.M. Tilaki, A.I. Zad, S.M. Mahdavi, Appl. Phys. A 88, 415–419 (2007)

    ADS  Google Scholar 

  72. B. Eneaze, A. Jumaili, Z.A. Talib, A. Zakaria, A. Ramizy, N.M. Ahmed, Appl. Phys. A 124, 577 (2018)

    ADS  Google Scholar 

Download references

Funding

The financial support from National Key Research and Development Program of China (2017YFB1104700, 2018YFB1107202), National Natural Science Foundation of China (NSFC, 91750205, 61774155, 61705227), Scientific Research Project of the Chinese Academy of Sciences (QYZDB-SSW-SYS038), Jilin Provincial Science & Technology Development Project (20180414019GH) and The Key Program of the International Partnership Program of CAS (181722KYSB20160015) is appreciated. R.A.G. thanks the financial support from Chinese Academy of Sciences President’s International Fellowship Initiative (Grant No. 2018VSA0001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rashid A. Ganeev or Chunlei Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Ganeev, R.A., Boltaev, G.S. et al. Structural variations during aging of the particles synthesized by laser ablation of copper in water. Appl. Phys. A 125, 698 (2019). https://doi.org/10.1007/s00339-019-2992-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2992-z

Navigation