Skip to main content
Log in

Dual-band dielectric light-harvesting nanoantennae made by nature

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Mechanisms to use nanoparticles to separate sunlight into photovoltaic useful range and thermally useful range to increase the efficiency of solar cells and to dissipate heat radiatively are discussed based on lessons that we learnt from photosynthesis. We show that the dual-band maxima in the absorption spectrum of bacterial light harvestors not only are due to the bacteriochlorophylls involved but also come from the geometry of the light harvestor. Being able to manipulate these two bands arbitrarily enables us to fabricate the nanoparticles required. Such mechanisms are also useful for the design of remote power charging and light sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. N.E. Hjerrild, S. Mesgari, F. Crisostomo, J.A. Scott, R. Amal, R.A. Taylor, Sol. Energy Mater. Sol. Cells 147, 281 (2016). https://doi.org/10.1016/j.solmat.2015.12.010

    Article  Google Scholar 

  2. Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou, G. Tan, R. Yang, X. Yin, Science (80-.) 355(6329), 1062 (2017). https://doi.org/10.1126/science.aai7899

    Article  ADS  Google Scholar 

  3. W. Shockley, H.J. Queisser, J. Appl. Phys. 32(3), 510 (1961). https://doi.org/10.1063/1.1736034

    Article  ADS  Google Scholar 

  4. J.J. Wysocki, P. Rappaport, J. Appl. Phys. 31(3), 571 (1960). https://doi.org/10.1063/1.1735630

    Article  ADS  Google Scholar 

  5. D. King, J. Kratochvil, W. Boyson, in Conf. Rec. Twenty Sixth IEEE Photovolt. Spec. Conf. - 1997 (IEEE, 1997), pp. 1183–1186. https://doi.org/10.1109/PVSC.1997.654300

  6. O. Dupré, R. Vaillon, M. Green, Sol. Energy Mater. Sol. Cells140, 92 (2015). https://doi.org/10.1016/j.solmat.2015.03.025

    Article  Google Scholar 

  7. J. Oh, B. Rammohan, A. Pavgi, S. Tatapudi, G. Tamizhmani, G. Kelly, M. Bolen, IEEE J. Photovolt. 8(5), 1160 (2018). https://doi.org/10.1109/JPHOTOV.2018.2841511

    Article  Google Scholar 

  8. J.J.L. Ting, J. Photochem. Photobiol. B Biol. 179, 134 (2018). https://doi.org/10.1016/j.jphotobiol.2018.01.011

    Article  Google Scholar 

  9. P.K. Jain, Phys. Today 71(8), 10 (2018). https://doi.org/10.1063/PT.3.3984

    Article  Google Scholar 

  10. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006). https://doi.org/10.1017/CBO9780511813535

    Book  Google Scholar 

  11. D.K. Kotter, S.D. Novack, W.D. Slafer, P.J. Pinhero, J. Sol. Energy Eng. 132(1), 011014 (2010). https://doi.org/10.1115/1.4000577

    Article  Google Scholar 

  12. G. McDermott, S.M. Prince, A.A. Freer, A.M. Hawthornthwaite-Lawless, M.Z. Papiz, R.J. Cogdell, N.W. Isaacs, Nature 374(6522), 517 (1995). https://doi.org/10.1038/374517a0

    Article  ADS  Google Scholar 

  13. D. Elsheakh, in Microw. Syst. Appl., ed. by S.K. Goudos, chap. 08 (IntechOpen, Rijeka, 2017), pp. 155–205. https://doi.org/10.5772/64918

    Google Scholar 

  14. M. Watanabe, A. Nakamura, A. Kunii, K. Kusano, M. Futagawa, J. Phys. Conf. Ser. 660(1), 0 (2015). https://doi.org/10.1088/1742-6596/660/1/012110

    Article  Google Scholar 

  15. N. Shinohara, Wireless Power Transfer via Radiowaves. ISTE (Wiley, Hoboken, NJ, USA, 2013). https://doi.org/10.1002/9781118863008

    Book  Google Scholar 

  16. J.L. Miller, Phys. Today 67(8), 12 (2014). https://doi.org/10.1063/PT.3.2464

    Article  Google Scholar 

  17. N. Keskin, H. Liu, in 2015 IEEE 65th Electron. Components Technol. Conf. (IEEE, Dc, 2015), pp. 1828–1833. https://doi.org/10.1109/ECTC.2015.7159848

  18. J.S. Tsai, J.S. Hu, S.L. Chen, X. Huang, Adv. Mech. Eng. 8(2), 1 (2016). https://doi.org/10.1177/1687814016632693

    Article  Google Scholar 

  19. J.J.L. Ting, (2017). arXiv:1702.06671

  20. A. Alù, N. Engheta, Phys. Rev. Lett. 101(4), 043901 (2008). https://doi.org/10.1103/PhysRevLett.101.043901

    Article  ADS  Google Scholar 

  21. H.M. Wu, N.R.S. Reddy, G.J. Small, J. Phys. Chem. B 101(4), 651 (1997). https://doi.org/10.1021/jp962766k

    Article  Google Scholar 

  22. S. Georgakopoulou, R.N. Frese, E. Johnson, C. Koolhaas, R.J. Cogdell, R. van Grondelle, G. van der Zwan, Biophys. J. 82(4), 2184 (2002). https://doi.org/10.1016/S0006-3495(02)75565-3

    Article  Google Scholar 

  23. D. Pathak, S.K. Sharma, V.S. Kushwah, Prog. Electromagn. Res. M62(November), 123 (2017). https://doi.org/10.2528/PIERM17092701

    Article  Google Scholar 

  24. M.Z. Papiz, S.M. Prince, T. Howard, R.J. Cogdell, N.W. Isaacs, J. Mol. Biol. 326(5), 1523 (2003). https://doi.org/10.1016/S0022-2836(03)00024-X

    Article  Google Scholar 

  25. J. Koepke, X. Hu, C. Muenke, K. Schulten, H. Michel, Structure4(5), 581 (1996). https://doi.org/10.1016/S0969-2126(96)00063-9

    Article  Google Scholar 

  26. P.J. Schuck, D.P. Fromm, A. Sundaramurthy, G.S. Kino, W.E. Moerner, Phys. Rev. Lett. 94(1), 017402 (2005). https://doi.org/10.1103/PhysRevLett.94.017402

    Article  ADS  Google Scholar 

  27. J.N. Farahani, D.W. Pohl, H.J. Eisler, B. Hecht, Phys. Rev. Lett.95(1), 17402 (2005). https://doi.org/10.1103/PhysRevLett.95.017402

    Article  ADS  Google Scholar 

  28. P. Bharadwaj, B. Deutsch, L. Novotny, Adv. Opt. Photonics 1(3), 438 (2009). https://doi.org/10.1364/AOP.1.000438

    Article  ADS  Google Scholar 

  29. F. Monticone, C. Argyropoulos, A. Alu, IEEE Antennas Propag. Mag.PP(99), 1 (2017). https://doi.org/10.1109/MAP.2017.2752721

    Article  Google Scholar 

  30. S. Yoon, C. Park, M. Kim, K. Kim, Y. Yang, in 2010 Asia-Pacific Microw. Conf., pp. 219–222 (2010)

  31. J. Lee, J. Lee, K. Min, Y. Cheon, IEEE Antennas Wirel. Propag. Lett. 13, 935 (2014). https://doi.org/10.1109/LAWP.2014.2323066

    Article  ADS  Google Scholar 

  32. Z. Li, X. Liu, N. Xu, J. Du, Phys. Rev. Lett. 114(14), 1 (2015). https://doi.org/10.1103/PhysRevLett.114.140504

    Article  Google Scholar 

  33. R.K. Mongia, P. Bhartia, Int. J. Microw. Millim. Wave Comput. Eng.4(3), 230 (1994). https://doi.org/10.1002/mmce.4570040304

    Article  Google Scholar 

  34. A.I. Kuznetsov, A.E. Miroshnichenko, M.L. Brongersma, Y.S. Kivshar, B. Luk’yanchuk, Science (80-.) 354(6314), aag2472 (2016). https://doi.org/10.1126/science.aag2472

    Article  Google Scholar 

  35. R.C.J. Hsu, A. Ayazi, B. Houshmand, B. Jalali, Nat. Photonics1(9), 535 (2007). https://doi.org/10.1038/nphoton.2007.145

    Article  ADS  Google Scholar 

  36. D. Sinha, G.A.J. Amaratunga, Phys. Rev. Lett. 114(14), 147701 (2015). https://doi.org/10.1103/PhysRevLett.114.147701

    Article  ADS  Google Scholar 

  37. D. Guha, Y. Antar, IEEE Trans. Antennas Propag. 54(9), 2657 (2006). https://doi.org/10.1109/TAP.2006.880766

    Article  ADS  Google Scholar 

  38. S. Ramo, J.R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics, 3rd edn. (Wiley, New York, 1994)

    Google Scholar 

  39. C.S. DeYoung, S.A. Long, IEEE Antennas Wirel. Propag. Lett.5(1), 426 (2006). https://doi.org/10.1109/LAWP.2006.883952

    Article  ADS  Google Scholar 

  40. Y.X. Guo, Y.F. Ruan, X.Q. Shi, IEEE Trans. Antennas Propag.53(10), 3394 (2005). https://doi.org/10.1109/TAP.2005.856381

    Article  ADS  Google Scholar 

  41. C.J. Law, A.W. Roszak, J. Southall, A.T. Gardiner, N.W. Isaacs, R.J. Cogdell, Mol. Membr. Biol. 21(3), 183 (2004). https://doi.org/10.1080/09687680410001697224

    Article  Google Scholar 

  42. R.G. Alden, E. Johnson, V. Nagarajan, W.W. Parson, C.J. Law, R.G. Cogdell, J. Phys. Chem. B 101(23), 4667 (1997). https://doi.org/10.1021/jp970005r

    Article  Google Scholar 

  43. L. Novotny, Phys. Rev. Lett. 98(26), 266802 (2007). https://doi.org/10.1103/PhysRevLett.98.266802

    Article  ADS  Google Scholar 

  44. Y. Yu, V.E. Ferry, A.P. Alivisatos, L. Cao, Nano Lett. 12(7), 3674 (2012). https://doi.org/10.1021/nl301435r

    Article  ADS  Google Scholar 

  45. D. Soren, R. Ghatak, R.K. Mishra, D.R. Poddar, Prog. Electromagn. Res. B 60, 195 (2014). https://doi.org/10.2528/PIERB14031306

    Article  Google Scholar 

  46. A. Alù, N. Engheta, Phys. Rev. B 78(8), 085112 (2008). https://doi.org/10.1103/PhysRevB.78.085112

    Article  ADS  Google Scholar 

  47. N.E. Hjerrild, R.A. Taylor, Phys. Today 70(12), 40 (2017). https://doi.org/10.1063/PT.3.3790

    Article  ADS  Google Scholar 

  48. R.K. Chaudhary, K.V. Srivastava, A. Biswas, in 2011 Natl. Conf. Commun. (IEEE, 2011), pp. 1–5. https://doi.org/10.1109/NCC.2011.5734715

  49. D. Soren, R. Ghatak, R.K. Mishra, D.R. Poddar, J. Electromagn. Anal. Appl. 04(01), 9 (2012). https://doi.org/10.4236/jemaa.2012.41002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Juhi-Lian Ting.

Additional information

To the memory of my father.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ting, J.JL. Dual-band dielectric light-harvesting nanoantennae made by nature. Appl. Phys. A 125, 164 (2019). https://doi.org/10.1007/s00339-019-2459-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2459-2

Navigation