Skip to main content
Log in

Synthesis Al complex and investigating effect of doped ZnO nanoparticles in the electrical and optical efficiency of OLEDS

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, an organometallic complex based on aluminum ions is synthesized. And it is utilized as fluorescent material in the organic light-emitting diodes (OLEDs). The synthesized complex was characterized using XRD, UV–Vis, FT-IR as well as PL spectroscopy analyses. The energy levels of Al complex were determined by cyclic voltammetry measurements. Then, the effects of ZnO nanoparticles (NPs) of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate), PEDOT:PSS, on the electrical and optical performance of the organic light-emitting diodes have been investigated. For this purpose, two samples containing ITO/PEDOT:PSS/PVK/Alq3/PBD/Al with two different concentration and two samples containing ITO/PEDOT:PSS:ZnO/PVK/Alq3/PBD/Al with two different concentration were prepared. Then, hole transport, electron transport and emissive layers were deposited by the spin coating method and the cathode layer (Al) was deposited by the thermal evaporation method. The OLED simulation was also done by constructing the model and choosing appropriate parameters. Then, the experimental data were collected and the results interpreted both qualitatively and quantitatively. The results of the simulations were compared with experimental data of the J–V spectra. Comparing experimental data and simulation results showed that the electrical and optical efficiency of the samples with ZnO NPs is appreciably higher than the samples without ZnO NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.A. Carter, J.C. Scott, P.J. Brock, Enhanced luminance in polymer composite light emitting devices. Appl. Phys. Lett. 71(9), 1145–1147 (1997)

    Article  ADS  Google Scholar 

  2. Y. Ohmori, H. Kajii, T. Sawatani, H. Ueta, K. Yoshino, Enhancement of electroluminescence utilizing confined energy transfer for red light emission. Thin Solid Films 393, 407–411 (2001)

    Article  ADS  Google Scholar 

  3. D.D. Zhang, J. Feng, Y.F. Liu, Y.Q. Zhong, Y. Bai, Y. Jin, G.H. Xie, Q. Xue, Y. Zhao, S.Y. Liu, H.-B. Sun, Enhanced hole injection in organic light-emitting devices by using Fe3O4 as an anodic buffer layer. Appl. Phys. Lett. 94, 223303–223306 (2009)

    Article  ADS  Google Scholar 

  4. N.N. Dinh, L.H. Chi, T.T.C. Thuy, T.Q. Trung, V.V. Truong, Enhancement of current-voltage characteristics of multilayer organic light emitting diodes by using nanostructured composite films. J. Appl. Phys. 105(9), Article ID 093518 (2009)

  5. L. Qian, Y. Zheng, K.R. Choudhury et al., Electroluminescence from light-emitting polymer/ZnO nanoparticle heterojunctions at sub-bandgap voltages. Nano Today 5(5), 384–389 (2010)

    Article  Google Scholar 

  6. C.H. Lin, K.T. Chen, J.R. Ho, J.W. J Cheng, R.C.C. Tsiang, PEDOT: PSS/graphene nanocomposite hole-injection layer in polymer light-emitting diodes. J. Nanotechnol. Article ID 942629 (2012)

  7. Z.B. Deng, X.M. Ding, S.T. Lee, W.A. Gambling, Enhanced brightness and efficiency in organic electroluminescent devices using SiO2 buffer layers. Appl. Phys. Lett. 74(15), 2227–2229 (1999)

    Article  ADS  Google Scholar 

  8. I.M. Chan, F.C. Hong, Improved performance of the single-layer and double-layer organic light emitting diodes by nickel oxide coated indium tin oxide anode. Thin Solid Films 450(2), 304–311 (2004)

    Article  ADS  Google Scholar 

  9. J. Staudigel, M. Stossel, F. Steuber, J. Simmerer, A quantitative numerical model of multilayer vapor-deposited organic light emitting diodes. J. Appl. Phys. 86, 3895 (1999)

    Article  ADS  Google Scholar 

  10. G.G. Malliaras, J.C. Scott, Numerical simulations of the electrical characteristics and the efficiencies of single-layer organic light emitting diodes. J. Appl. Phys. 85, 7426 (1999)

    Article  ADS  Google Scholar 

  11. B.K. Crone, I.H. Campbell, P.S. Davids, D.L. Smith, C.J. Neef, J.P. Ferraris, Device physics of single layer organic light-emitting diodes. J. Appl. Phys. 86, 5767 (1999)

    Article  ADS  Google Scholar 

  12. W. Schottky, The influence of the structural effects, especially the Thomson graphic quality, on the electron emission of metals. Physikalische Zeitschrift 15, 872 (1914)

    Google Scholar 

  13. I.H. Campbell, P.S. Davids, D.L. Smith, N.N. Barashkov, J.P. Ferraris, The Schottky energy barrier dependence of charge injection in organic light emitting diodes. Appl. Phys. Lett. 72, 1863 (1998)

    Article  ADS  Google Scholar 

  14. B.K. Crone, I.H. Campbell, P.S. Davids, D.L. Smith, Charge injection and transport in single-layer organic light-emitting diodes. Appl. Phys. Lett. 73, 3162 (1998)

    Article  ADS  Google Scholar 

  15. H. Bässler, Charge transport in disordered organic photoconductors—a Monte-Carlo simulation study. Phys. Status Solidi B 175, 15 (1993)

    Article  ADS  Google Scholar 

  16. H.C.F. Martens, P.W.M. Blom, H.F.M. Schoo, Comparative study of hole transport in poly(p-phenylenevinylene) derivatives. Phys. Rev. B 61, 7489 (2000)

    Article  ADS  Google Scholar 

  17. P.S. Davids, I.H. Campbell, D.L. Smith, Device model for single carrier organic diodes. J. Appl. Phys. 82, 6319 (1997)

    Article  ADS  Google Scholar 

  18. S.J. Konezny, D.L. Smith, M.E. Galvin, L.J. Rothberg, Modeling the influence of charge traps on single-layer organic light-emitting diode efficiency. J. Appl. Phys. 99, 064509 (2006)

    Article  ADS  Google Scholar 

  19. E. Tutis, M.N. Bussac, B. Masenelli, M. Carrard, L. Zuppiroli, Numerical model for organic light-emitting diodes. J. Appl. Phys. 89, 430 (2001)

    Article  ADS  Google Scholar 

  20. B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J.C. Scott, W. Riess, Simulating electronic and optical processes in multilayer organic light-emitting devices. IEEE J. Sel. Top. Quantum Electron. 9, 723 (2003)

    Article  Google Scholar 

  21. M. Brinkmann, G. Gadret, M. Muccini, C. Taliani, N. Masciocchiand, A. Sironi, Correlation between molecular packing and optical properties in different crystalline polymorphs and amorphous thin films of mer-tris(8-hydroxyquinoline)aluminum(III). J. Am. Chem. Soc. 122, 5147 (2000)

    Article  Google Scholar 

  22. M.J.J. Brigit Gilda, S. Anbarasu, Y. Samson, P.A. Devarajan, The influence of benzophenone substitution on the physico-chemical characterizations of 8-hydroxyquinoline NLO single crystals. J. Miner. Mater. Charact. Eng. 11, 769–773 (2012)

    Google Scholar 

  23. S.A. Bhagat, FTIR spectroscopy of Ca ++doped Alq3 OLED Phospor. Int. J. Sci. Res. 120, 509 (2015)

    Google Scholar 

  24. M.D. Halls, R. Aroca, Vibrational spectra and structure of tris(8-hydroxyquinoline)aluminum(III). Can. J. Chem. 76, 1730 (1998)

    Google Scholar 

  25. R.J. Curry, W.P. Gillin, J. Clarkson, D.N. Batchelder, Morphological study of aluminum tris(8-hydroxyquinoline) thin films using infrared and Raman spectroscopy. J. App. Phys. 92(4), 1902 (2002)

    Article  ADS  Google Scholar 

  26. M.-M. Duvenhage, Investigation of the luminescent properties of metal quinolates (Mqx) for use in OLED device. Thesis (2014)

  27. C. Cui, D.H. Park, J. Kim, J. Joo, D.J. Ahn, Oligonucleotide assisted light-emitting Alq3 microrods: energy transfer effect with fluorescent dyes. Chem. Commun. 49, 5360 (2013)

    Article  Google Scholar 

  28. M.M. El-Nahass, A.M. Farid, A.A. Atta, Structural and optical properties of Tris(8hydroxyquinoline) aluminum (III) (Alq3) thermal evaporated thin films. J. Alloys Compd. 507, 112–119 (2010)

    Article  Google Scholar 

  29. M. Braun, J. Gmeiner, M. Tzolov, M. Coelle, F.D. Meyer, W. Milius, H. Hillebrecht, O. Wendland, J.U. von Schűtz, W. Brűtting, A new crystalline phase of the electroluminescent material tris(8-hydroxyquinoline) aluminum exhibiting blueshifted fluorescence. J. Chem. Phys. 114(21), 9625 (2001)

    Article  ADS  Google Scholar 

  30. Y.K. Han, S.U. Lee, Molecular orbital study on the ground and excited states of methyl substituted tris(8-hydroxyquinoline) aluminum(III) Chem. Phys. Lett. 366, 9–16 (2002)

    Google Scholar 

  31. A. Curioni, W. Andreoni, Computer simulations for organic light-emitting diodes. J. Res. Dev. IBM 45, 101 (2001)

    Article  Google Scholar 

  32. M. Colle, J. Gmeiner, W. Milius, H. Hillebrecht, W. Brutting, Tunable photoluminescence from tris(8-hydroxyquinoline)aluminum(Alq3). Adv. Funct. Mater. 13(2), 108 (2003)

    Article  Google Scholar 

  33. M.M. Levichkova, J.J. Assa, H. Fröb, K. Leo, Blue luminescent isolated Alq3 molecules in a solid-state matrix. Appl. Phys. Lett. 88(20), 1912 (2006)

    Article  ADS  Google Scholar 

  34. P.E. Burrows, Z. Shen, V. Bulovic, D.M. McCarty, S.R. Forrest, Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices. J. Appl. Phys. 79, 7991–8006 (1996)

    Article  ADS  Google Scholar 

  35. M. Thelakkat, H.-W. Schmidt, Synthesis and properties of novel derivatives of 1, 3, 5-Tris (diarylamino) benzenes for electroluminescent devices. Adv. Mater. 10, 219 (1998)

    Article  Google Scholar 

  36. F.S. Rodembusch, F.R. Brand, D.S. Corrêa, J.C. Pocos, M. Martinelli, V. Stefani, Transition metal complexes from 2-(2′-hydroxyphenyl) benzoxazole: a spectroscopic and thermogravimetric stability study. Mater. Chem. Phys. 92, 389 (2005)

    Article  Google Scholar 

  37. R. Schlaf, P.G. Schroeder, M.W. Nelson, B.A. Parkinson, C.D. Merritt, L.A. Crisafulli, H. Murata, Z.H. Kafafi, Determination of interface dipole and band bending at the Ag/tris(8-hydroxyquinolinato) gallium organic Schottky contact by ultraviolet photoemission spectroscopy. Surf. Sci. 450, 142–152 (2000)

    Article  ADS  Google Scholar 

  38. A. Shafiee, M.M. Salleh, M. Yahaya, Determination of HOMO and LUMO of [6,6]-phenyl C61-butyric acid 3-ethylthiophene ester and poly(3-octyl-thiophene-2,5-diyl) through voltametry characterization. Sains Malays. 40, 173–176 (2011)

    Google Scholar 

  39. P. Scherrer, Bestimmung der Gröss und der Inneren Struktur von Kolloidteilchen Mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften, Göttngen, Mathematisch-Physikalische Klasse 2, 98–100 (1918)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Hui Wang as Arrow Street Capital, L. P. Boston, MA for his helpful discussion and valuable cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Jafari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahedi, Z., Jafari, M.R. Synthesis Al complex and investigating effect of doped ZnO nanoparticles in the electrical and optical efficiency of OLEDS. Appl. Phys. A 123, 98 (2017). https://doi.org/10.1007/s00339-016-0715-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0715-2

Keywords

Navigation