Skip to main content
Log in

FDTD subcell graphene model beyond the thin-film approximation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A subcell technique for calculation of optical properties of graphene with the finite-difference time-domain (FDTD) method is presented. The technique takes into account the surface conductivity of graphene which allows the correct calculation of its dispersive response for arbitrarily polarized incident waves interacting with the graphene. The developed technique is verified for a planar graphene sheet configuration against the exact analytical solution. Based on the same test case scenario, we also show that the subcell technique demonstrates a superior accuracy and numerical efficiency with respect to the widely used thin-film FDTD approach for modeling graphene. We further apply our technique to the simulations of a graphene metamaterial containing periodically spaced graphene strips (graphene strip-grating) and demonstrate good agreement with the available theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009)

    Article  ADS  Google Scholar 

  2. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. Liang, A. Zettl, Y.R. Shen, F. Wang, Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630–634 (2011)

    Article  ADS  Google Scholar 

  3. L.A. Falkovsky, Optical properties of graphene. J. Phys. Conf. Ser. 129, 012004 (2008)

    Article  Google Scholar 

  4. T. Stauber, N.M.R. Peres, A.K. Geim, Optical conductivity of graphene in the visible region of the spectrum. Phys. Rev. B 78, 085432 (2008)

    Article  ADS  Google Scholar 

  5. Y. Shao, J.J. Yang, M. Huang, A review of computational electromagnetic methods for graphene modeling, Int. J. Antennas Propag. Article ID 7478621, (2016)

  6. A. Vakili, N. Engheta, Transformation optics using graphene. Science 332(6035), 1291294 (2011)

    Google Scholar 

  7. E. Forati, G.W. Hanson, A.B. Yakovlev, A. Alu, Planar hyperlens based on a modulated graphene monolayer. Phys. Rev. B 89, 081410(R) (2014)

    Article  ADS  Google Scholar 

  8. M. Merano, Fresnel coefficients of a two-dimensional atomic crystal. Phys. Rev. A 93, 013832 (2016)

    Article  ADS  Google Scholar 

  9. I. Ahmed, E.H. Khoo, E. Li, Efficient modeling and simulation of graphene devices with the LOD-FDTD method. IEEE Microw. Wirel. Compon. Lett. 23(6), 306–308 (2013)

    Article  Google Scholar 

  10. G.D. Bouzianas, N.V. Kantartzis, C.S. Antonopoulos, T.D. Tsiboukis, Optimal modeling of infinite graphene sheets via a class of generalized FDTD schemes. IEEE Trans. Magn. 48(2), 379–382 (2012)

    Article  ADS  Google Scholar 

  11. X. Yu, C.D. Sarris, A perfectly matched layer for subcell FDTD and applications to themodeling of graphene structures. IEEE Antenna Wirel. Propag. Lett. 11, 1080–1083 (2012)

    Article  ADS  Google Scholar 

  12. V. Nayyeri, M. Soleimani, O.M. Ramahi, Modeling graphene in the finite-difference time-domain method using a surface boundary condition. EEE Trans. Antennas Propag. 61(8), 4176–4182 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Deinega, I. Valuev, Subpixel smoothing for conductive and dispersive media in the finite-difference time-domain method. Opt. Lett. 32, 3429–3431 (2007)

    Article  ADS  Google Scholar 

  14. http://fdtd.kintechlab.com

  15. T.L. Zinenko, Scattering and absorption of terahertz waves by a free-standing infinite grating of graphene strips: analytical regularization analysis. J. Opt. 17, 055604 (2015)

    Article  ADS  Google Scholar 

  16. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  17. A. Mohammadi, H. Nadgaran, M. Agio, Contour-path effective permettivities for the two-dimensional finite-difference time-domain method. Opt. Exp. 13, 10367 (2005)

    Article  ADS  Google Scholar 

  18. J.-Y. Lee, N.-H. Myung, Locally tensor conformal FDTD method for modeling arbitrary dielectric surface. Microw. Opt. Technol. Lett. 23, 245 (1999)

    Article  Google Scholar 

  19. J. Nadobny, D. Sullivan, W. Wlodarczyk, P. Deuflhard, P. Wust, A 3-D tensor FDTD-formulation for treatment of slopes interfaces in electrically inhomogeneous media. IEEE Trans. Antennas Propag. 51, 1760 (2003)

    Article  ADS  Google Scholar 

  20. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. Johnson, G. Burr, Improving accuracy by subpixel smoothing in FDTD. Opt. Lett. 31(20), 2972 (2006)

    Article  ADS  Google Scholar 

  21. I. Valuev, A. Deinega, S. Belousov, Iterative technique for analysis of periodic structures at oblique incidence in the finite-difference time-domain method. Opt. Lett. 33(13), 1491–1493 (2008)

    Article  ADS  MATH  Google Scholar 

  22. S. Belousov, M. Bogdanova, A. Teslyuk, Outcoupling efficiency of OLEDs with 2D periodical corrugation at the cathode. J. Phys. D Appl. Phys. 49(8), 085102 (2016)

    Article  ADS  Google Scholar 

  23. O.V. Shapoval, J.S. Gomez-Diaz, J. Perruisseau-Carrier, J.R. Mosig, A.I. Nosich, Integral equation analysis of plane wave scattering by coplanar graphene-strip gratings in the THz range. IEEE Trans. Terahertz Sci. Technol. 3(5), 666–674 (2013)

    Article  ADS  Google Scholar 

  24. Y.V. Bludov, A. Ferreira, N.M.R. Peres, M.I. Vasilevskiy, A primer on surface plasmon-polaritons in graphene. Int. J. Mod. Phys. B 27, 1341001 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. A. Fallahi, J. Perruisseau-Carrier, Design of tunable biperiodic graphene metasurfaces. Phys. Rev. B 86, 195408 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Belousov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valuev, I., Belousov, S., Bogdanova, M. et al. FDTD subcell graphene model beyond the thin-film approximation. Appl. Phys. A 123, 60 (2017). https://doi.org/10.1007/s00339-016-0635-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0635-1

Keywords

Navigation