Skip to main content
Log in

Self-ordered nanopore arrays through hard anodization assisted by anode temperature ramp

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, hard anodization assisted by anode temperature ramp was employed to fabricate self-ordered nanoporous alumina in the wide range of interpore distances (259–405 nm) in pure oxalic acid and mixture of oxalic and phosphoric acid solutions. Anode temperature ramp technique was employed to adjust the anodization current density to optimize the self-ordering of the nanopore arrays in the interpore range in which no ordered self-assembled hard anodized anodic aluminum oxide has reported. It is found that the certain ratios of oxalic and phosphoric acid solutions in this anodization technique increased self-ordering of the nanopores especially for anodization voltages over the 170 V by increasing alumina’s viscous flow which could lead to decrease the overall current density of anodization, yet leveled up by anode temperature ramp. However, below 150 V anodization voltage, the ratio of interpore distance to the anodization voltage of the both anodization techniques was the same (~2 nm/V), while above this voltage, it increased to about 2.2 nm/V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Masuda, K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995). doi:10.1126/science.268.5216.1466

    Article  ADS  Google Scholar 

  2. H. Masuda, M. Satoh, Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn. J. Appl. Phys. 35, L126 (1996)

    Article  ADS  Google Scholar 

  3. E.P. Gusev et al., High-resolution depth profiling in ultrathin Al2O3 films on Si. Appl. Phys. Lett. 76, 176–178 (2000). doi:10.1063/1.125694

    Article  ADS  MathSciNet  Google Scholar 

  4. C. Liu et al., An all-in-one nanopore battery array. Nat. Nanotechnol. 9, 1031–1039 (2014). doi:10.1038/nnano.2014.247. http://www.nature.com/nnano/journal/v9/n12/abs/nnano.2014.247.html#supplementary-information

  5. S. Zhao et al., Statistical study of effective anisotropy field in ordered ferromagnetic nanowire arrays. J. Nanosci. Nanotechnol. 7(1), 381–386 (2007)

    Google Scholar 

  6. S. Zhao et al., New application of AAO template: a mold for nanoring and nanocone arrays. J. Am. Chem. Soc. 128(38), 12352–12353 (2006)

    Article  Google Scholar 

  7. X. Zhang et al., Fabrication of highly ordered InSb nanowire arrays by electrodeposition in porous anodic alumina membranes. J. Electrochem. Soc. 152(10), C664–C668 (2005)

    Article  Google Scholar 

  8. M. Lahav et al., Core−shell and Segmented polymer−metal composite nanostructures. Nano Lett. 6(9), 2166–2171 (2006)

    Article  ADS  Google Scholar 

  9. M. Hideki, Y. Kouichi, O. Atsushi, Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution. Jpn. J. Appl. Phys. 37(11A), L1340 (1998)

    Google Scholar 

  10. A.P. Li et al., Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 84(11), 6023–6026 (1998)

    Article  ADS  Google Scholar 

  11. O. Jessensky, F. Müller, U. Gösele, Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 72(10), 1173–1175 (1998)

    Article  ADS  Google Scholar 

  12. J. Choi et al., Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers. J. Appl. Phys. 94(8), 4757–4762 (2003)

    Article  ADS  Google Scholar 

  13. W. Lee, S.-J. Park, Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem. Rev. 114, 7487–7556 (2014). doi:10.1021/cr500002z

    Article  Google Scholar 

  14. H. Masuda, K. Yada, A. Osaka, Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution. Jpn. J. Appl. Phys. 37, L1340 (1998)

    Article  ADS  Google Scholar 

  15. S. Shingubara et al., Self-organization of a porous alumina nanohole array using a sulfuric/oxalic acid mixture as electrolyte. Electrochem. Solid State Lett. 7(3), E15–E17 (2004)

    Article  Google Scholar 

  16. M.A. Kashi et al., Optimum self-ordered nanopore arrays with 130–270 nm interpore distances formed by hard anodization in sulfuric/oxalic acid mixtures. J. Phys. D Appl. Phys. 40(22), 7032 (2007)

    Article  ADS  Google Scholar 

  17. M.A. Kashi et al., The effect of pH and composition of sulfuric–oxalic acid mixture on the self-ordering configuration of high porosity alumina nanohole arrays. J. Phys. D Appl. Phys. 40(15), 4625 (2007)

    Article  ADS  Google Scholar 

  18. S.Z. Chu et al., Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization. J. Electrochem. Soc. 153, B384–B391 (2006). doi:10.1149/1.2218822

    Article  Google Scholar 

  19. W. Lee et al., Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 5, 741–747 (2006)

    Article  ADS  Google Scholar 

  20. Y. Li et al., Fabrication of highly ordered nanoporous alumina films by stable high-field anodization. Nanotechnology 17, 5101 (2006)

    Article  ADS  Google Scholar 

  21. K. Schwirn et al., Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization. ACS Nano 2, 302–310 (2008). doi:10.1021/nn7001322

    Article  Google Scholar 

  22. M.A. Kashi et al., Self-ordering of anodic nanoporous alumina fabricated by accelerated mild anodization method. Thin Solid Films 518(23), 6767–6772 (2010)

    Article  ADS  Google Scholar 

  23. M.A. Kashi et al., Fabrication of self-ordered nanoporous alumina with 69–115 nm interpore distances in sulfuric/oxalic acid mixtures by hard anodization. Jpn. J. Appl. Phys. 49, 015202 (2010)

    Article  ADS  Google Scholar 

  24. G.E. Thompson, G.C. Wood, Porous anodic film formation on aluminium. Nature 290, 230–232 (1981)

    Article  ADS  Google Scholar 

  25. H. Han et al., In situ determination of the pore opening point during wet-chemical etching of the barrier layer of porous anodic aluminum oxide: nonuniform impurity distribution in anodic oxide. ACS Appl. Mater. Interfaces 5, 3441–3448 (2013). doi:10.1021/am400520d

    Article  Google Scholar 

  26. L. Vojkuvka et al., On the mechanical properties of nanoporous anodized alumina by nanoindentation and sliding tests. Surf. Coat. Technol. 206, 2115–2124 (2012). doi:10.1016/j.surfcoat.2011.09.040

    Article  Google Scholar 

  27. S. Garcia-Vergara et al., Growth of porous anodic films on sputtering-deposited aluminium incorporating Al–Hf alloy nanolayers. Electrochim. Acta 54, 3662–3670 (2009)

    Article  Google Scholar 

  28. K.R. Hebert, J.E. Houser, A model for coupled electrical migration and stress-driven transport in anodic oxide films. J. Electrochem. Soc. 156, C275–C281 (2009). doi:10.1149/1.3151835

    Article  Google Scholar 

  29. J.E. Houser, K.R. Hebert, The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films. Nat. Mater. 8, 415–420 (2009). http://www.nature.com/nmat/journal/v8/n5/suppinfo/nmat2423_S1.html

  30. M.M. Lohrengel, Thin anodic oxide layers on aluminium and other valve metals: high field regime. Mater. Sci. Eng. R 11, 243–294 (1993). doi:10.1016/0927-796X(93)90005-N

    Article  Google Scholar 

  31. A.C. Harkness, L. Young, High resistance anodic oxide films on aluminium. Can. J. Chem. 44, 2409–2413 (1966). doi:10.1139/v66-363

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the University of Kashan for supporting this work by Grant No. (159023/16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Maleki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadniaei, M., Maleki, K., Kashi, M.A. et al. Self-ordered nanopore arrays through hard anodization assisted by anode temperature ramp. Appl. Phys. A 122, 915 (2016). https://doi.org/10.1007/s00339-016-0446-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0446-4

Keywords

Navigation