Skip to main content
Log in

Role of patterning induced defect on the switching field in magnetic nanostructure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report a systematic micromagnetic study on the variation of switching field in magnetic nanostructure in presence of defect or magnetic inclusion. The switching behavior of single individual island is very important when the dipolar coupling between them is minimal. We highlighted effects of geometry, size of a single magnetic island in the magnetic array on switching field. Change in switching behavior of a single magnetic island is studied as a function of defects having different magnetic anisotropy, dimension, position, projection of easy axis on to the xy plane in the island. It is seen that the size of the defect and the variation of anisotropy of defects over a feasible range play an important role on switching field. We also noticed that the projection of easy axis on to the xy plane in defects decreases the switching field significantly, whereas there was no such strong effect of their position inside the island. In the single domain regime, the island reversal is dominated by coherent rotation of magnetization. The micromagnetic modeling of edge damage in a single magnetic island due to focussed ion milling which is one of the common techniques for patterning such nanostructures showed a drastic fall in switching field and thus proved that the switching field also largely depends on the method of nanostructuring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.M.D. Coey, Magnetism and Magnetic Materials (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  2. S.N. Piramanayagam, K. Srinivasan, J. Magn. Magn. Mater. 321, 485 (2009)

    Article  ADS  Google Scholar 

  3. O. Hellwig, A. Berger, T. Thomson, E. Dobisz, Z.Z. Bandic, H. Yang, D.S. Kercher, E.E. Fullerton, Appl. Phys. Lett. 90, 162516 (2007)

    Article  ADS  Google Scholar 

  4. O. Hellwig, E.E. Marinero, D. Kercher, T. Hennen, A. MacCallum, E. Dobisz, T.W. Wu, J. Lille, T. Hirano, R. Ruiz, M.K. Grobis, D. Weller, T.R. Albrecht, J. Appl. Phys. 116, 123913 (2014)

    Article  ADS  Google Scholar 

  5. A. Barman, S. Barman, Phys. Rev. B 79, 144415 (2009)

    Article  ADS  Google Scholar 

  6. L. Weimin, Magnetization Reversal of Co/Pd Bit Patterned Media, Ph.D Thesis, Department of Material Science and Engineering, National University of Singapore, 2013, http://www.scholarbank.nus.edu.sg/handle/10635/49371

  7. B. Pfau, C.M. Günther, E. Guehrs, T. Hauet, H. Yang, L. Vinh, X. Xu, D. Yaney, R. Rick, S. Eisebitt, O. Hellwig, Appl. Phys. Lett. 99, 062502 (2011)

    Article  ADS  Google Scholar 

  8. B. Pfau, C.M. Günther, E. Guehrs, T. Hauet, T. Hennen, S. Eisebitt, O. Hellwig, Appl. Phys. Lett. 105, 132407 (2014)

    Article  ADS  Google Scholar 

  9. P. Sharma, N. Kaushik, A. Makino, M. Esashi, A. Inoue, J. Appl. Phys. 109, 07B908 (2011)

    Google Scholar 

  10. N. Kaushik, P. Sharma, A. Makino, S. Tanaka, M. Esashi, I.E.E.E. Trans, Magn. 50(4), 3201404 (2014)

    Article  Google Scholar 

  11. N. Thiyagarajah, H. Duan, D.L.Y. Song, M. Asbahi, S.H. Leong, J.K.W. Yang, V. Ng, Appl. Phys. Lett. 101, 152403 (2012)

    Article  ADS  Google Scholar 

  12. J.M. Shaw, S.E. Russek, T. Thomson, M.J. Donahue, B.D. Terris, O. Hellwig, E. Dobisz, M.L. Schneider, Phys. Rev. B 78, 024414 (2008)

    Article  ADS  Google Scholar 

  13. P. Krone, D. Makarov, A. Cattoni, G. Faini, A.-M. Haghiri-Gosnet, I. Knittel, U. Hartmann, T. Schrefl, M. Albrecht, J. Nanopart. Res. 13, 5587–5593 (2011)

    Article  Google Scholar 

  14. N. Eibagi, J.J. Kan, F.E. Spada, E.E. Fullerton, IEEE Magn. Lett. 3, 4500204 (2012)

    Article  Google Scholar 

  15. R. Sbiaa, S.N. Piramanayagam, Appl. Phys. Lett. 92, 012510 (2008)

    Article  ADS  Google Scholar 

  16. L. Kaganovskiy, S. Khizroev, D. Litvinov, J. Appl. Phys. 111, 033924 (2012)

    Article  ADS  Google Scholar 

  17. E. Chunsheng, J.O. Rantschler, S. Khizroev, D. Litvinov, J. Appl. Phys. 103, 113910 (2008)

    Article  ADS  Google Scholar 

  18. W. Ying, W. Rui, X. Hai-Long, B. Jian-Min, W. Fu-Lin, Chin. Phys. B 22(6), 068506 (2013)

    Article  ADS  Google Scholar 

  19. W.M. Li, Y. Yang, Y.J. Chen, T.L. Huang, J.Z. Shi, J. Ding, J. Magn. Magn. Mater. 324, 1575–1580 (2012)

    Article  ADS  Google Scholar 

  20. J.K.W. Yang, Y. Chen, T. Huang, H. Duan, N. Thiyagarajah, H.K. Hui, S.H. Leong, V. Ng, Nanotechnology 22, 385301 (2011)

    Article  ADS  Google Scholar 

  21. N. Honda, K. Yamakawa, K. Ouchi, IEEE Trans. Magn. 46, 6 (2010)

    Article  Google Scholar 

  22. M. Donahue, D. G. Porter, OOMMF User’s Guide, Version 1.0, Intergency Report NISTIR 6376 (National Institute of Standard and Technology, Gaithersburg, MD) http://math.nist.gov/oommf

  23. G.S. Abo, Y.-K. Hong, J. Park, J. Lee, W. Lee, B.-C. Choi, IEEE Trans. Magn. 49(8), 4937 (2013)

    Article  ADS  Google Scholar 

  24. J. Kawaji, T. Asahi, H. Hashimoto, J. Hokkyo, T. Osaka, S. Matsunuma, G. Safran, J. Ariake, K. Ouchi, J. Appl. Phys. 95(13), 8023 (2004)

    Article  ADS  Google Scholar 

  25. H.S. Lee, S.B. Choe, S.C. Shin, C.G. Kim, J. Magn. Magn. Mater. 239, 343 (2002)

    Article  ADS  Google Scholar 

  26. D. Smith, V. Parekh, E. Chunsheng, S. Zhang, W. Donner, T.R. Lee, S. Khizroev, J. Appl. Phys. 103, 023920 (2008)

    Article  ADS  Google Scholar 

  27. O. Hellwig, T. Hauet, T. Thomson, E. Dobisz, J.D. Risner-Jamtgaard, D. Yaney, B.D. Terris, E.E. Fullerton, Appl. Phys. Lett. 95, 232505 (2009)

    Article  ADS  Google Scholar 

  28. M. Ranjbar, K.G.A. Tavakkoli, S.N. Piramanayagam, K.P. Tan, R. Sbiaa, S.K. Wong, J. Phys. D Appl. Phys. 44, 265005 (2011)

    Article  ADS  Google Scholar 

  29. J.W. Lau, R.D. McMichael, S.H. Chung, J.O. Rantschler, V. Parekh, D. Litvinov, Appl. Phys. Lett. 92, 012506 (2008)

    Article  ADS  Google Scholar 

  30. B.N. Engel, C.D. England, R.A.V. Leeuwen, M.H. Wiedmann, C.M. Falco, Phys. Rev. Lett. 67(14), 1910 (1991)

    Article  ADS  Google Scholar 

  31. P. Dova, H. Laidler, K. O’Grady, M.F. Toney, M.F. Doerner, J. Appl. Phys. 85, 2775 (1999)

    Article  ADS  Google Scholar 

  32. M. Jaafar, R. Sanz, J. McCord, J. Jensen, R. Schäfer, M. Vázquez, A. Asenjo, Phys. Rev. B 83, 094422 (2011)

    Article  ADS  Google Scholar 

  33. N. Gaur, S. Kundu, S.N. Piramanayagam, S.L. Maurer, H.K. Tan, S.K. Wong, S.E. Steen, H. Yang, C.S. Bhatia, Sci. Rep. 3, 1907 (2013)

    Article  ADS  Google Scholar 

  34. C. Chappert, H. Bernas, J. Ferré, V. Kottler, J.-P. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, H. Launois, Science 280, 1919 (1998)

    Article  ADS  Google Scholar 

  35. C. Vieu, J. Gierak, H. Launois, T. Aign, P. Meyer, J.P. Jamet, J. Ferré, C. Chappert, T. Devolder, V. Mathet, H. Bernas, J. Appl. Phys. 91, 3103 (2002)

    Article  ADS  Google Scholar 

  36. X. Ju, Micromagnetic Simulation of Field Coupled Devices from Co/Pt Nanomagnets, Dissertation, Department of Electrical and Computer Engineering, Technical University of Munich, 2012, https://www.nano.ei.tum.de/en/team-members/ehemalige/ju/

  37. L. Kaganovskiy, J.W. Lau, S. Khizroev, D. Litvinov, J. Appl. Phys. 114, 123909 (2013)

    Article  ADS  Google Scholar 

  38. T. Hauet, L. Piraux, S.K. Srivastava, V.A. Antohe, D. Lacour, M. Hehn, F. Montaigne, J. Schwenk, M.A. Marioni, H.J. Hug, O. Hovorka, A. Berger, S. Mangin, F.A. Araujo, Phys. Rev. B 89, 174421 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mohanty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talapatra, A., Mohanty, J. Role of patterning induced defect on the switching field in magnetic nanostructure. Appl. Phys. A 122, 807 (2016). https://doi.org/10.1007/s00339-016-0341-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0341-z

Keywords

Navigation