Skip to main content
Log in

Controllable fabrication of large-scale hierarchical silver nanostructures for long-term stable and ultrasensitive SERS substrates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, we aim to prepare effective and long-term stable hierarchical silver nanostructures serving as surface-enhanced Raman scattering (SERS) substrates simply via displacement reaction on Aluminum foils. In our experiments, Hexadecyltrimethylammonium bromide (CTAB) is used as cationic surfactant to control the velocity of displacement reaction as well as the hierarchical morphology of the resultant. We find that the volume ratio of CTAB to AgNO3 plays a dominant role in regulating the hierarchical structures besides the influence of displacement reaction time. These as-prepared hierarchical morphologies demonstrate excellent SERS sensitivity, structural stability and reproducibility with low values of relative standard deviation less than 20 %. The high SERS analytical enhancement factor of ~6.7 × 108 is achieved even at the concentration of Crystal Violet (CV) as low as 10−7 M, which is sufficient for single-molecule detection. The detection limit of CV is 10−9 M in this study. We believe that this simple and rapid approach integrating advantages of low-cost production and high reproducibility would be a promising way to facilitate routine SERS detection and will get wide applications in chemical synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridzne adsorbed at a silver electrode. Chem. Phys. Lett. 26(2), 163–166 (1974)

    Article  ADS  Google Scholar 

  2. K.K.K.S. Shin, Surface-enhanced Raman scattering: a powerful tool for chemical identification. Anal. Sci. 27(8), 775–783 (2011)

    Article  Google Scholar 

  3. J. Kneipp, H. Kneipp, K. Kneipp, SERS–a single-molecule and nanoscale tool for bioanalytics. Chem. Soc. Rev. 37(5), 1052–1060 (2008). doi:10.1039/b708459p

    Article  Google Scholar 

  4. F.J. Garcia-Vidal, J.B. Pendry, Collective theory for surface enhanced Raman scattering. Phys. Rev. Lett. 77(6), 1163–1166 (1996). doi:10.1103/PhysRevLett.77.1163

    Article  ADS  Google Scholar 

  5. J.A. Hongxing Xu, Mikael. Ka, Peter. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E 62(3), 4318–4324 (2000)

    Article  ADS  Google Scholar 

  6. X. Gong, Y. Bao, C. Qiu, C. Jiang, Individual nanostructured materials: fabrication and surface-enhanced Raman scattering. Chem. Commun. 48(56), 7003–7018 (2012). doi:10.1039/c2cc31603j

    Article  Google Scholar 

  7. Q. Zhou, X. Zhang, Y. Huang, Z. Li, Y. Zhao, Z. Zhang, Enhanced surface-enhanced Raman scattering performance by folding silver nanorods. Appl. Phys. Lett. 100(11), 113101 (2012). doi:10.1063/1.3694056

    Article  ADS  Google Scholar 

  8. C. Tian, Y. Deng, D. Zhao, J. Fang, Plasmonic silver supercrystals with ultrasmall nanogaps for ultrasensitive SERS-based molecule detection. Adv. Opt. Mater. 3(3), 404–411 (2015). doi:10.1002/adom.201400576

    Article  Google Scholar 

  9. C. Tian, J. Li, C. Ma, P. Wang, X. Sun, J. Fang, An ordered mesoporous Ag superstructure synthesized via a template strategy for surface-enhanced Raman spectroscopy. Nanoscale 7(29), 12318–12324 (2015). doi:10.1039/c5nr03759j

    Article  ADS  Google Scholar 

  10. P.P. Zhang, J. Gao, X.H. Sun, An ultrasensitive, uniform and large-area surface-enhanced Raman scattering substrate based on Ag or Ag/Au nanoparticles decorated Si nanocone arrays. Appl. Phys. Lett. 106(4), 043103 (2015). doi:10.1063/1.4906800

    Article  ADS  Google Scholar 

  11. Y. Sun, Growth of silver nanowires on GaAs wafers. Nanoscale 3(5), 2247–2255 (2011). doi:10.1039/c1nr10153f

    Article  ADS  Google Scholar 

  12. V.S. Lina Ramanauskaite, Surface enhanced Raman spectroscopy of l-alanyl-l-tryptophan dipeptide adsorbed on Si substrate decorated with triangular silver nanoplates. Chem. Phys. Lett. 623(2), 46–50 (2015). doi:10.1016/j.cplett.2015.01.049

    Article  ADS  Google Scholar 

  13. G. Liu, W. Cai, L. Kong, G. Duan, Y. Li, J. Wang, G. Zuo, Z. Cheng, Standing Ag nanoplate-built hollow microsphere arrays: Controllable structural parameters and strong SERS performances. J. Mater. Chem. 22(7), 3177–3184 (2012). doi:10.1039/c1jm14296h

    Article  Google Scholar 

  14. J.M. McLellan, A. Siekkinen, J. Chen, Y. Xia, Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes. Chem. Phys. Lett. 427(s 1–3), 122–126 (2006). doi:10.1016/j.cplett.2006.05.111

    Article  ADS  Google Scholar 

  15. L. Ma, Y. Huang, M. Hou, Z. Xie, Z. Zhang, Silver nanorods wrapped with ultrathin Al2O3 layers exhibiting excellent SERS sensitivity and outstanding SERS stability. Sci. Rep. 5, 12890 (2015). doi:10.1038/srep12890

    Article  ADS  Google Scholar 

  16. J. Fang, S. Du, S. Lebedkin, Z. Li, R. Kruk, M. Kappes, H. Hahn, Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy. Nano Lett. 10(12), 5006–5013 (2010). doi:10.1021/nl103161q

    Article  ADS  Google Scholar 

  17. C.D.C. Tian, S. Liu et al., Nanoparticle attachment on silver corrugated-wire nanoantenna for large increases of surface-enhanced Raman scattering. ACS Nano 5(12), 9442–9449 (2011)

    Article  Google Scholar 

  18. H. You, Y. Ji, L. Wang, S. Yang, Z. Yang, J. Fang, X. Song, B. Ding, Interface synthesis of gold mesocrystals with highly roughened surfaces for surface-enhanced Raman spectroscopy. J. Mater. Chem. 22(5), 1998–2006 (2012). doi:10.1039/c1jm13211c

    Article  Google Scholar 

  19. Z. Liu, F. Zhang, Z. Yang, H. You, C. Tian, Z. Li, J. Fang, Gold mesoparticles with precisely controlled surface topographies for single-particle surface-enhanced Raman spectroscopy. J. Mater. Chem. C 1(35), 5567 (2013). doi:10.1039/c3tc30824c

    Article  Google Scholar 

  20. Z. Liu, L. Cheng, L. Zhang, C. Jing, X. Shi, Z. Yang, Y. Long, J. Fang, Large-area fabrication of highly reproducible surface enhanced Raman substrate via a facile double sided tape-assisted transfer approach using hollow Au-Ag alloy nanourchins. Nanoscale 6(5), 2567–2572 (2014). doi:10.1039/c3nr05840a

    Article  ADS  Google Scholar 

  21. D.L. Ning Zhou, Deren. Yang, Morphology and composition controlled synthesis of flower-like silver nanostructures. Nanoscale Res. Lett. 9(1), 302 (2014)

    Article  ADS  Google Scholar 

  22. Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, J. Fang, Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins. Adv. Mater. 26(15), 2431–2439 (2014). doi:10.1002/adma.201305106

    Article  Google Scholar 

  23. P. Xu, N.H. Mack, S.H. Jeon, S.K. Doorn, X. Han, H.L. Wang, Facile fabrication of homogeneous 3D silver nanostructures on gold-supported polyaniline membranes as promising SERS substrates. Langmuir 26(11), 8882–8886 (2010). doi:10.1021/la904617p

    Article  Google Scholar 

  24. Y. Mao, Y. Yang, H. Yang, J. Han, Y. Zeng, J. Wei, X. Meng, C. Wang, Fabrication and characterization of hierarchical multipod silver citrate complex microcrystals with excellent SERS properties. RSC Adv. 6(15), 12311–12314 (2016). doi:10.1039/c6ra00221h

    Article  Google Scholar 

  25. G.M. Zhongbo Li, Qing. Huang, Xiangdong. Li, Chuhong. Zhu, Zhuo. Zhang, Galvanic-cell-induced growth of Ag nanosheet-assembled structures as sensitive and reproducible SERS substrates. Chemistry 18(47), 14948–14953 (2012)

    Article  Google Scholar 

  26. Y. Sun, G.P. Wiederrecht, Surfactantless synthesis of silver nanoplates and their application in SERS. Small 3(11), 1964–1975 (2007). doi:10.1002/smll.200700484

    Article  Google Scholar 

  27. Y. Sun, Direct growth of dense, pristine metal nanoplates with well-controlled dimensions on semiconductor substrates. Chem. Mater. 19(24), 5845–5847 (2007)

    Article  Google Scholar 

  28. C. Zhu, G. Meng, Q. Huang, Z. Huang, Vertically aligned Ag nanoplate-assembled film as a sensitive and reproducible SERS substrate for the detection of PCB-77. J. Hazard. Mater. 211(212), 389–395 (2012). doi:10.1016/j.jhazmat.2011.07.118

    Article  Google Scholar 

  29. C. Zhu, G. Meng, Q. Huang, Z. Li, Z. Huang, M. Wang, J. Yuan, Large-scale well-separated Ag nanosheet-assembled micro-hemispheres modified with HS-β-CD as effective SERS substrates for trace detection of PCBs. J. Mater. Chem. 22(5), 2271–2278 (2012). doi:10.1039/c2jm14823d

    Article  ADS  Google Scholar 

  30. C. Zhu, G. Meng, Q. Huang, Z. Zhang, Q. Xu, G. Liu, Z. Huang, Z. Chu, Ag nanosheet-assembled micro-hemispheres as effective SERS substrates. Chem. Commun. 47(9), 2709–2711 (2011). doi:10.1039/c0cc04482b

    Article  Google Scholar 

  31. L. Cheng, C. Ma, G. Yang, H. You, J. Fang, Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy. J. Mater. Chem. A 2(13), 4534 (2014). doi:10.1039/c3ta14674j

    Article  Google Scholar 

  32. H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, M. Chen, Single molecule detection from a large-scale SERS-active Au(7)(9)Ag(2)(1) substrate. Sci. Rep. 1, 112 (2011). doi:10.1038/srep00112

    Article  ADS  Google Scholar 

  33. Y. Qian, G. Meng, Q. Huang, C. Zhu, Z. Huang, K. Sun, B. Chen, Flexible membranes of Ag-nanosheet-grafted polyamide-nanofibers as effective 3D SERS substrates. Nanoscale 6(9), 4781–4788 (2014). doi:10.1039/c3nr06483b

    Article  ADS  Google Scholar 

  34. J. He, X. Han, J. Yan, L. Kang, B. Zhang, Y. Du, C. Dong, H.-L. Wang, P. Xu, Fast fabrication of homogeneous silver nanostructures on hydrazine treated polyaniline films for SERS applications. CrystEngComm 14(15), 4952–4954 (2012). doi:10.1039/c2ce25257k

    Article  Google Scholar 

  35. J. Yan, X. Han, J. He, L. Kang, B. Zhang, Y. Du, H. Zhao, C. Dong, H.L. Wang, P. Xu, Highly sensitive surface-enhanced Raman spectroscopy (SERS) platforms based on silver nanostructures fabricated on polyaniline membrane surfaces. ACS Appl. Mater. Interfaces 4(5), 2752–2756 (2012). doi:10.1021/am300381v

    Article  Google Scholar 

  36. X.X. Chengliang Yang, Ying. Zhang, Zenghui. Peng, Zhaoliang. Cao, Junlin. Wang, Li. Xuan, Large-scale controlled fabrication of highly roughened flower-like silver nanostructures in liquid crystalline phase. Sci. Rep. 5, 12355 (2015). doi:10.1038/srep12355

    Article  ADS  Google Scholar 

  37. W.Y. Jiajia Fu, Chunming. Wang, Facile synthesis of Ag dendrites on Al foil via galvanic replacement reaction with [Ag(NH3)2]Cl for ultrasensitive SERS detecting of biomolecules. Mater. Chem. Phys. 141(1), 107–113 (2013). doi:10.1016/j.matchemphys.2013.04.031

    Article  Google Scholar 

  38. Y. Xia, S.E. Skrabalak, J. Chen, X. Lu, Galvanic replacement reaction: a simple and powerful route to hollow and porous metal nanostructures. J. Nanoeng. Nanosyst. 221(1), 1–16 (2007). doi:10.1243/17403499jnn111

    Google Scholar 

  39. W. Song, Y. Cheng, H. Jia, W. Xu, B. Zhao, Surface enhanced Raman scattering based on silver dendrites substrate. J. Colloid Interface Sci. 298(2), 765–768 (2006). doi:10.1016/j.jcis.2006.01.037

    Article  Google Scholar 

  40. J. Dong, H. Zheng, X. Yan, Y. Sun, Z. Zhang, Fabrication of flower-like silver nanostructure on the Al substrate for surface enhanced fluorescence. Appl. Phys. Lett. 100(5), 051112 (2012). doi:10.1063/1.3681420

    Article  ADS  Google Scholar 

  41. E.C. Le Ru, E. Balckie, M. Meyer, P.G. Etchegoin, Surface enhanced Raman scattering enhancement factors: a comprehensive study. J. Phys. Chem. C 111(37), 13794–13803 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the financial support by the National Natural Science Foundation of China (Grant No. 61371057), the National Special Fund for the Development of Major Research Equipment and Instruments (Grant No. 2011YQ03013403) and the Open Research Fund Program of Jiangsu Provincial Key Lab. of Center support this work for Photon Manufacturing Science and Technology (GZ201309).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingfei Cheng or Xiao Gong.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest that can inappropriately influence our work; there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be constructed as influencing the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Fang, J., Cheng, M. et al. Controllable fabrication of large-scale hierarchical silver nanostructures for long-term stable and ultrasensitive SERS substrates. Appl. Phys. A 122, 844 (2016). https://doi.org/10.1007/s00339-016-0311-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0311-5

Keywords

Navigation