Skip to main content
Log in

Structure, phase transition and impedance of Zn1−x Li x O (0.10 ≤ x ≤ 0.70) ceramic

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Structural transformations of Li-doped Zn1−x Li x O (0.10 ≤ x ≤ 0.70) which was synthesised by solid-state reaction were investigated. XRD carried out on powder specimens of the samples show that they are polycrystalline in nature with a hexagonal wurtzite structure having minor impurities. The result indicates the maximum limit of substitution of Zn atoms by Li is at x = 0.4. The lattice parameter a reduced from 3.01 to 2.99 Å, while c reduced from 5.21 to 5.19 Å. However, the Zn–O bond length reduced from 1.88 to 1.87 Å for the undoped, to x = 0.60 for the doped, respectively. The c/a ratio is 1.73 and is almost constant for all samples. The grain size of the (100) peak of the undoped ZnO is 41.73 nm and that of x = 0.10 is 41.76 nm. For x = 0.2–0.70, the grain size is 41.72 nm indicating that the grain size is almost independent of doping. The SEM results indicate a variation of grain size from 2.18 to 5.15 µm for the undoped ZnO to x = 0.50, which shows increase in grain size and reduction in grain boundaries as doping increases. The results show that x = 0.50 has the highest grain size and the one with the highest transition temperature is x = 0.6. DTA results indicate the structural phase transition temperature of the doped ZnO ranged from ~371 to ~409 K and increased as the amount of Li increases. A single arc is observed in all the impedance plots of the ZnO together with the presence of a relaxation process which is non-Debye. The impedance data show reduced resistance with increase in lithium content. A general increase in dielectric constant with increase in lithium content is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V. Bilgin, J. Electron. Mater. 88, 1969–1978 (2009)

    Article  ADS  Google Scholar 

  2. A.H. Salama, J. Mater. Sci. Technol. 25, 314–315 (2009)

    Google Scholar 

  3. A. Janotti, Van de Walle, Rep. Progr. Phys. 72, 126501 (2009)

    Article  ADS  Google Scholar 

  4. D.S. Singh, J. Nagaraju, S.B. Krupanidhi, J. Appl. Phys. A 88, 421–424 (2007)

    Article  ADS  Google Scholar 

  5. S.H. Jeong, B.N. Park, S.-B. Lee, J.-H. Boo, J. Thin Solid Films 516, 5586–5589 (2007)

    Article  Google Scholar 

  6. Y.L. Du, Y. Dengi, M.S. Zhang, Solid State Commun. J. 137, 78–81 (2005)

    Article  ADS  Google Scholar 

  7. M.K.R. Khan, M.M. Rahman, I. Tanaka, Nucleus 39, 149–154 (2003)

    Google Scholar 

  8. M.K.R. Khan, M. Rahman, S.J. Mia, M. Shahajahan, Indian J. Pure Appl. Phys. 41, 211–216 (2003)

    Google Scholar 

  9. S. Polarz, A. Orlov, A. Hoffmann, M.R. Wagner, C. Rauch, R. Kirste, M. Lehmann, Chem. Matter 21, 3889–3897 (2009)

    Article  Google Scholar 

  10. M. Ardyanian, N. Sedigh, Bull. Mater. Sci. 37, 1309–1314 (2014)

    Article  Google Scholar 

  11. Y. Zeng, Z.Z. Ye, W.Z. Xu, L.I. Chen, D.Y. Li, L.P. Zhu, Y.L. Hu, J. Cryst. Growth 283(1), 180 (2005)

    Article  ADS  Google Scholar 

  12. X.S. Wang, Z.C. Wu, J.F. Webb, Z.G. Liu, Appl. Phys. A 77, 561–565 (2003)

    Article  ADS  Google Scholar 

  13. J.S. Kim, H.J. Lee, H.J. Seog, W. Kim, J. Korean Phys. Soc. 58, 640–644 (2011)

    Article  Google Scholar 

  14. A. Onodera, N. Tamaki, K. Jin, H. Yamashita, Jpn. J. Appl. Phys. 36, 6008 (1997)

    Article  ADS  Google Scholar 

  15. A. Sokiassian, A. Tganstsev, N. Seller, Appl. Phys. Lett. 07, 192903 (2010)

    Article  ADS  Google Scholar 

  16. U. Ahmadu, T. Salkus, A.O. Musa, K.U. Isah, Open J. Phys. Chem. 1, 94–103 (2011)

    Article  Google Scholar 

  17. Z. Zhou, K. Kato, T. Tomaki, M. Yoshino, H. Yukawa, M. Morinaga, K. Morita, J. Eur. Ceram. Soc. 24, 139–146 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Ahmadu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadu, U., Salaudeen, I.T. Structure, phase transition and impedance of Zn1−x Li x O (0.10 ≤ x ≤ 0.70) ceramic. Appl. Phys. A 122, 693 (2016). https://doi.org/10.1007/s00339-016-0213-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0213-6

Keywords

Navigation