Skip to main content
Log in

Thermal kinetic and dielectric parameters of acenaphthene crystal grown by vertical Bridgman technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The bulk acenaphthene crystal was grown in a single-wall ampoule by vertical Bridgman technique. X-ray diffraction analysis confirmed the orthorhombic crystal system of title compound with space group Pcm21. Thermal behavior of compound was studied using thermogravimetry—differential scanning calorimetry analysis. Thermal kinetic parameters like activation energy, frequency factor, Avrami exponent, reaction rate and degree of conversion were calculated using Kissingers and Ozawa methods under non-isothermal condition for acenaphthene crystal and reported for the first time. The calculated thermal kinetic parameters are presented. Dielectric studies were performed to calculate the dielectric parameters such as dielectric constant, dielectric loss, AC conductivity, and activation energy from Arrhenius plot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Aravinth, G. Anandha Babu, P. Ramasamy, J. Therm. Anal. Calorim. 1165, 117 (2014)

    Google Scholar 

  2. S.P. Prabhakaran, R. Ramesh Babu, G. Bhagavannarayana, K. Ramamurthi, Bull. Mater. Sci. 151, 37 (2014)

    Google Scholar 

  3. N. Vijayan, G. Bhagavannarayana, N. Balamurugan, R. Ramesh Babu, K.K. Maurya, R. Gopalakrishnan, P. Ramasamy, J. Cryst. Growth 318, 293 (2006)

    Google Scholar 

  4. T. Suthan, N.P. Rajesh, J. Cryst. Growth 3156, 312 (2010)

    Google Scholar 

  5. S. Ayers, M.M. Faktor, D. Marr, D.L. Stevenson, J. Mater. Sci. 31, 7 (1972)

    Google Scholar 

  6. K. Sakata, M. Mukai, G. Rajesh, M. Arivanandhan, Y. Inatomi, T. Ishikawa, Y. Hayakawa, Int. J. Thermophys. 352, 35 (2014)

    Google Scholar 

  7. C.W. Lan, C.Y. Tu, J. Cryst. Growth 406, 226 (2001)

    Google Scholar 

  8. R. Ma, H. Zhang, D.J. Larson Jr, K.C. Mandal, J. Cryst. Growth 216, 266 (2004)

    Google Scholar 

  9. S.T. Balint, L. Braescu, L. Sylla, S. Epure, T. Duffar, J. Cryst. Growth 1564, 310 (2008)

    Google Scholar 

  10. P. Dold, K.W. Benz, Cryst. Res. Technol. 51, 32 (1997)

    Google Scholar 

  11. C.W. Lan, Chem. Eng. Sci. 1437, 59 (2004)

    Google Scholar 

  12. M.G. Kim, G.O. Kim, B.K. Park, KSME Int. J. 1188, 15 (2001)

    Google Scholar 

  13. J.P. Garandet, T. Alboussiere, Prog. Cryst. Growth Charact. Mater. 133, 38 (1999)

    Google Scholar 

  14. D. Morvan, M.E. Ganaoui, P. Bontoux, Int. J. Heat Mass Transf. 573, 42 (1999)

    Google Scholar 

  15. J.R. Cahoon, Can. J. Phys. 140, 91 (2012)

    Google Scholar 

  16. J. Straszko, M. Olszak-Humienik, J. Możejko, J. Therm. Anal. 1415, 48 (1997)

    Google Scholar 

  17. M. Olszak-Humienik, J. Możejko, J. Therm. Anal. Calorim. 829, 56 (1999)

    Google Scholar 

  18. S.I. Ali, K. Majid, Thermochim. Acta 183, 317 (1998)

    Google Scholar 

  19. J. Straszko, M. Olszak-Humienik, J. Możejko, J. Therm. Anal. Calorim. 935, 59 (2000)

    Google Scholar 

  20. S.M. Sidel, F.A. Santos, V.O. Gordo, E. Idalgo, A.A. Monteiro, J.C.S. Moraes, K. Yukimitu, J. Therm. Anal. Calorim. 613, 106 (2011)

    Google Scholar 

  21. E.H. Kissinger, Anal. Chem. 1702, 29 (1957)

    Google Scholar 

  22. T. Ozawa, J. Therm. Anal. Calorim. 301, 2 (1970)

    Google Scholar 

  23. J.A. Augis, J.E. Bennett, J. Therm. Anal. Calorim. 283, 13 (1978)

    Google Scholar 

  24. E. Benavidez, L. Santini, E. Brandaleze, J. Therm. Anal. Calorim. 485, 103 (2011)

    Google Scholar 

  25. R. Ramesh Babu, N. Balamurugan, N. Vijayan, R. Gopalakrishnan, G. Bhagavannarayana, P. Ramasamy, J. Cryst. Growth 649, 285 (2005)

    Google Scholar 

  26. M.A. Lasheen, A.M. Abdeen, Acta Crystallogr. Sect. A. 245, 28 (1972)

    Google Scholar 

  27. R.M. Ribeiro, D.S. dos Santos, R.S. de Biasi, J. Alloys Compd. 227, 363 (2004)

    Google Scholar 

  28. A.A. Joraid, Thermochim. Acta 78, 436 (2005)

    Google Scholar 

  29. R.R. Peláa, L.S. Cividanesa, D.D. Brunellia, S.M. Zanettib, G.P. Thim, Mater. Res. 289, 11 (2008)

    Google Scholar 

  30. S. Lendvayova, K. Moricova, E. Jóna, S. Uherkova, J. Kraxner, V. Pavlík, R. Durny, S.C. Mojumdar, J. Therm. Anal. Calorim. 1133, 112 (2013)

    Google Scholar 

  31. Omer Kaygili, J. Therm. Anal. Calorim. 223, 117 (2014)

    Google Scholar 

  32. P.S. Latha Mageshwaria, R. Priya, S. Krishnan, V. Joseph, S. Jerome Das, Optik 2289, 125 (2014)

    Google Scholar 

  33. B. Uma, Rajnikant, K. Sakthi Murugesan, S. Krishnan, B. Milton Boaz, Prog. Nat. Sci. Mater. Int. 378, 24 (2014)

    Google Scholar 

  34. B. Lal, S.K. Khosa, R. Tickoo, K.K. Bamzai, P.N. Kotru, Mater. Chem. Phys. 158, 83 (2004)

    Google Scholar 

  35. Z. Osman, M.I. Mohd Ghazali, L. Othman, K.B. Md Isa, Results Phys. 1, 2 (2012)

    Google Scholar 

Download references

Acknowledgments

One of the authors S. Karuppusamy thanks the Anna University authorities for financial support through Anna Centenary Research Fellowship (Lr No: CR/ACRF/JAN2012/36). The authors are thankful to SAIF—IIT Madras for instrumentation facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gopalakrishnan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karuppusamy, S., Dinesh Babu, K., Nirmal Kumar, V. et al. Thermal kinetic and dielectric parameters of acenaphthene crystal grown by vertical Bridgman technique. Appl. Phys. A 122, 498 (2016). https://doi.org/10.1007/s00339-016-0028-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0028-5

Keywords

Navigation