Skip to main content
Log in

Analytical Calculation of Energy levels of mono- and bilayer Graphene Quantum Dots Used as Light Absorber in Solar Cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper by solving Dirac equation, we present an analytical solution to calculate energy levels and wave functions of mono- and bilayer graphene quantum dots. By supposing circular quantum dots, we solve Dirac equation and obtain energy levels and band gap with relations in a new closed and practical form. The energy levels are correlated with a radial quantum number and radius of quantum dots. In addition to monolayer quantum dots, AA- and AB-stacked bilayer quantum dots are investigated and their energy levels and band gap are calculated as well. Also, we analyze the influence of the quantum dots size on their energy spectrum. It can be observed that the band gap decreases as quantum dots’ radius increases. On the other hand, increase in the band gap is more in AB-stacked bilayer quantum dots. Using the obtained relations, the band gap is obtained in each state. Comparing the energy spectra obtained from the tight-binding approximation with those of our obtained relations shows that the behavior of the energies as function of the dot size is qualitatively similar, but in some cases, quantitative differences can be seen. As quantum dots radius increases, the analytical results approach to the tight-binding method results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z.Z. Zhang, K. Chang, F.M. Peeters, Tuning of energy levels and optical properties of graphene quantum dots. Phys. Rev. B 77, 235411 (2008)

    Article  ADS  Google Scholar 

  2. M. Grujic, M. Zarenia, A. Chaves, M. Tadic, G.A. Farias, F.M. Peeters, Electronic and optical properties of a circular graphene quantum dot in a magnetic field: Influence of the boundary conditions. Phys. Rev. B 84, 205441 (2011)

    Article  ADS  Google Scholar 

  3. M. Zarenia, A. Chaves, G.A. Farias, F.M. Peeters, Energy levels of triangular and hexagonal graphene quantum dots: a comparative study between the tight-binding and the Dirac equation approach. Phys. Rev. B 84(24), 245403 (2011)

    Article  ADS  Google Scholar 

  4. J. Wang, G. Zhao, D. Bagayoko, D. Guo, J. Chen, Z. Sun, Energy structure of two-dimensional graphene-semiconductor quantum dot. World J. Condens. Matter Phys. 3(3), 144–151 (2013). doi:10.4236/wjcmp.2013.33023

    Article  ADS  Google Scholar 

  5. D.R. da Costa, M. Zarenia, A. Chaves, G.A. Farias, F.M. Peeters, Analytical study of the energy levels in bilayer graphene quantum dots. Carbon 78, 392 (2014)

    Article  Google Scholar 

  6. D.R. da Costa, M. Zarenia, A. Chaves, G.A. Farias, F.M. Peeters, Energy levels of bilayer graphene quantum dots. Phys. Rev. B 92, 115437 (2015)

    Article  ADS  Google Scholar 

  7. M. Grundmann, The Physics of Semiconductors (Springer, Berlin, 2011)

    Google Scholar 

  8. J. P. Connolly. Modelling Multiple Quantum Well Solar Cells. M.Sc. thesis. Imperial College (1991)

  9. S. Vedrain, P. Torchio, A. Merlen, J. Bagierek, F. Flory, A. Sangar, L. Escoubas, Optical characterization of organic blend films integrating metallic nanoparticles. Sol. Cells 102, 31–35 (2012)

    Article  Google Scholar 

  10. Y.Y. Liang et al., For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4 %. Adv. Mater. 22, E135–E138 (2010)

    Article  Google Scholar 

  11. M. Dutta, S. Sarkar, T. Ghosh, D. Basak, ZnO/graphene quantum dot solid-state solar cell. J. Phys. Chem. C 116, 20127–20131 (2012)

    Article  Google Scholar 

  12. J. Wu, Z.M. Wang (eds.), Quantum Dot Solar Cells, Lecture Notes in Nanoscale Science and Technology 15, (Springer, New York, 2014). doi:10.1007/978-1-4614-8148-5_3

  13. E.H. Lie, Material parameters of ingaasp and inalgaas systems for use in quantum well structures at low and room temperatures. Phys. E 5, 215 (2010)

    Article  Google Scholar 

  14. International Energy Outlook 2010 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy, (Retrieved online on 2010-06-13). http://www.jointsolarpanel.nl/fileadmin/jointsolarpanel/user/documents/seminar2004/stanleyzc04.pdf (2010)

  15. J. Nelson, The Physics of Solar Cells (Imperial College Press, London, 2007)

    Google Scholar 

  16. J. Twidell, T. Weir, Renewable Eenergy Resources (Taylor and Francis, London, 2006)

    Google Scholar 

  17. A. Luque, A. Marti, A metallic intermediate band high efficiency solar cell. Prog. Photovolt Res. Appl 9, 73–86 (2001)

    Article  Google Scholar 

  18. J. Nelson, Quantum-well structures for photovoltaic energy conversion, in Physics of Thin Films, vol. 21, ed. by M. Francome, J. Vossen (Academic Press, New York, 1995), pp. 311–368

  19. M.A. Green, Third Generation Photovoltaics (Springer, Berlin, 2003)

    Google Scholar 

  20. Y.C. Huang, C.P. Chang, M.F. Lin, Electric-field induced modification of electronic properties of few-layer graphene nanoribbons. J. Appl. Phys. 104, 103714 (2008)

    Article  ADS  Google Scholar 

  21. Z.C. He et al., Simultaneous enhancement of open-circuit voltage, short circuit current density, and fill factor in polymer solar cell. Adv. Mater. 23, 2636–4643 (2011)

    Google Scholar 

  22. C.E. Small et al., High-efficiency inverted dithienogermole thienopyrrolodione-based polymer solar cell. Nat. Photon. 6, 115–120 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  23. S.H. Kang, S.H. Choi, M.S. Kang, J.Y. Kim, H.S. Kim, T. Hyeon, Y.E. Sung, Nanorodbased dye-sensitized solar cells with improved charge collection efficiency. Adv. Mater. 20, 54–58 (2008)

    Article  Google Scholar 

  24. J.L. Gray, The Physics of the Solar Cell (Wiley, New York, 2009)

    Google Scholar 

  25. H.J. Hovel, Semiconductors and Semimetals, vol. 11 (Academic press, Solar Cells, 1975)

    Google Scholar 

  26. B.G. Streetman, S.K. Banerjee, Solid state electronic devices (Pearson, London, 2006)

    Google Scholar 

  27. E. Ahmadi, A. Asgari. Theoretical Calculation of Optical Absorption Spectrum for Armchair Graphene Nanoribbon. In: 2nd International Science, Social-Science, Engineering and Energy Conference Engineering Science and Management (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shahryar Tamandani or Ghafar Darvish.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamandani, S., Darvish, G. & Faez, R. Analytical Calculation of Energy levels of mono- and bilayer Graphene Quantum Dots Used as Light Absorber in Solar Cells. Appl. Phys. A 122, 37 (2016). https://doi.org/10.1007/s00339-015-9547-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-015-9547-8

Keywords

Navigation