Skip to main content
Log in

Polarization control of an infrared silicon light-emitting diode by dressed photons and analyses of the spatial distribution of doped boron atoms

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper reports the fabrication of a polarization-controlled infrared LED fabricated by dressed-photon–phonon (DPP)-assisted annealing of a bulk Si crystal. For the DPP-assisted annealing, linearly polarized infrared light with a wavelength of 1.342 μm was made normally incident on the top surface of the crystal. The photon energy at the peak of the emitted light spectrum of the fabricated LED was close to that of the light irradiated during the DPP-assisted annealing. A degree of polarization of as large as 0.07 was obtained. The spatial distribution of the doped B atoms in the fabricated LED was measured, and the following findings were obtained: (1) B atoms formed pairs in which the separation between the two B atoms was three times the lattice constant of the Si crystal; and (2) the B atom pairs were apt to orient along the direction perpendicular to the propagation direction and to the polarization direction of the light irradiated during the DPP-assisted annealing. Based on these findings (1) and (2), photon breeding was confirmed with respect to photon energy and spin, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.D. Hirschman, L. Tysbekov, S.P. Duttagupta, P.M. Fauchet, Nature 384, 338 (1996)

    Article  ADS  Google Scholar 

  2. Z.H. Lu, D.J. Lockwood, J.-M. Baribeau, Nature 378, 258 (1995)

    Article  ADS  Google Scholar 

  3. L. Dal Negro, R. Li, J. Warga, S.N. Beasu, Appl. Phys. Lett. 92, 181105 (2008)

    Article  ADS  Google Scholar 

  4. T. Komoda, Nucl. Instrum. Methods Phys. Res. SectB Beam Interact. Mater. Atoms 96, 387 (1995)

    Article  ADS  Google Scholar 

  5. S. Yerci, R. Li, L. Dal, Negro. Appl. Phys. Lett. 97, 081109 (2010)

    Article  ADS  Google Scholar 

  6. S.K. Ray, S. Das, R.K. Singha, S. Manna, A. Dhar, Nanoscale Res. Lett. 6, 224 (2011)

    Article  ADS  Google Scholar 

  7. T. Kawazoe, M.A. Mueed, M. Ohtsu, Appl. Phys. B 104, 747 (2011)

    Article  ADS  Google Scholar 

  8. M.A. Tran, T. Kawazoe, M. Ohtsu, Appl. Phys. A 115, 105 (2014)

    Article  ADS  Google Scholar 

  9. T. Kawazoe, M. Ohtsu, K. Akahane, N. Yamamoto, Appl. Phys. B 107, 659 (2012)

    Article  ADS  Google Scholar 

  10. H. Tanaka, T. Kawazoe, M. Ohtsu, K. Akahane, Fluoresc. Mater. 1, 1 (2015)

    Google Scholar 

  11. N. Wada, T. Kawazoe, M. Ohtsu, Appl. Phys. B 108, 25 (2012)

    Article  ADS  Google Scholar 

  12. H. Tanaka, T. Kawazoe, M. Ohtsu, Appl. Phys. B 108, 51 (2012)

    Article  ADS  Google Scholar 

  13. T. Kawazoe, M. Ohtsu, Appl. Phys. A 115, 127 (2014)

    Article  ADS  Google Scholar 

  14. M. Ohtsu, Dressed Photon (Springer, Dordrecht, 2013), pp. 11–18

    Google Scholar 

  15. M. Yamaguchi, T. Kawazoe, M. Ohtsu, Appl. Phys. A 115, 119 (2014)

    Article  ADS  Google Scholar 

  16. N. Wada, M.-A. Tran, T. Kawazoe, M. Ohtsu, Appl. Phys. A 115, 113 (2014)

    Article  ADS  Google Scholar 

  17. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors, 4th edn. (Springer, Dordrecht, 2010), pp. 345–426

    Google Scholar 

  18. M. Ohtsu, Progress in Nanophotonics 1, ed. by M. Ohtsu (Springer, Dordrecht, 2011), pp.8–11

  19. T. Kawazoe, N. Wada, M. Ohtsu, Adv. Opt. Technol. (2014) Article IC 958327, doi:10.1155/2014/958327

  20. M.F. Schubert, S. Chhajed, J.K. Kim, E.F. Schubert, Appl. Phys. Lett. 91, 051117 (2007)

    Article  ADS  Google Scholar 

  21. L. Zhang, J.H. Teng, S.J. Chua, E.A. Fitzgerald, Appl. Phys. Lett. 95, 261110 (2009)

    Article  ADS  Google Scholar 

  22. B.E. Stern, J. Poutanen, Mon. Not. R. Astron. Soc. 383, 1695 (2008)

    Article  ADS  Google Scholar 

  23. R. Jankowiak, R. Richert, H. Bässler, J. Phys. Chem. 89, 4569 (1985)

    Article  Google Scholar 

  24. K. Hono, Prog. Mater Sci. 47, 621 (2001)

    Article  Google Scholar 

  25. K. Godwod, R. Kowalczyk, Z. Szmid, Phys. Status. Solidi (a) 21, 227 (1974)

    Article  ADS  Google Scholar 

  26. Y. Tanaka, K. Kobayashi, Phys. E 40, 297 (2007)

    Article  Google Scholar 

  27. E. Anastassakis, A. Pinczuk, E. Burstein, F.H. Pollak, M. Cardona, Solid State Commun. 8, 133 (1970)

    Article  ADS  Google Scholar 

  28. Y. Shinohara, T. Otobe, J. Iwata, K. Yanaba, J. Phys. Soc. Jpn. 67, 685 (2012)

    Google Scholar 

  29. T. Kawazoe, K. Nishioka, M. Ohtsu, Abstract of the 21st International Display Workshops, (Soc. Information Display, 2014) PRJ-1 (Niigata, Japan, 3–5 Dec 2014)

Download references

Acknowledgments

This work was partially supported by the Core-to-Core Program of JSPS (A. Advanced Research Network), a Grant-in-Aid for Scientific Research (B) (No. 24360023) of MEXT, and the Exploratory Research program (No.15K13374) of MEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoichi Ohtsu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawazoe, T., Nishioka, K. & Ohtsu, M. Polarization control of an infrared silicon light-emitting diode by dressed photons and analyses of the spatial distribution of doped boron atoms. Appl. Phys. A 121, 1409–1415 (2015). https://doi.org/10.1007/s00339-015-9288-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9288-8

Keywords

Navigation