Skip to main content
Log in

High temporal resolution and calibration in pump–probe experiments characterizing femtosecond laser–dielectrics interaction

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the aim of performing pump–probe experiments with a high temporal accuracy, the determination of the perfect temporal overlap of the two incoming pulses is crucial. When addressing laser–dielectrics interaction, this ‘time zero’ is often estimated from the dynamics of interest itself (e.g. when optical changes start). Here, we present an experimental approach to overcome this limitation, enabling in situ determination of the time zero independently from the observed dynamical process. We rely on an adapted frequency-resolved optical gating technique, which provides in addition the complete characterization of the probe pulse, measured directly in the focal plane of interaction. The designed set-up permits the observation of transient dynamics with a temporal sampling resolution smaller by a factor of eight compared to the pump pulse duration. For demonstration, we follow in time the change of transient optical properties at the surface of a fused silica sample irradiated by a single femtosecond pulse, during the pulse itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Manzoni, D. Polli, G. Cerullo, Two-color pump-probe system broadly tunable over the visible and the near infrared with sub-30 fs temporal resolution. Rev. Sci. Instrum. 77, 023103 (2006)

    Article  ADS  Google Scholar 

  2. F. Blanchard, D. Golde, F.H. Su, L. Razzari, G. Sharma, R. Morandotti, T. Ozaki, M. Reid, M. Kira, S.W. Koch, F.A. Hegmann, Effective mass anisotropy of hot electrons in nonparabolic conduction bands of n-doped InGaAs films using ultrafast terahertz pump-probe techniques. Phys. Rev. Lett. 107, 107401 (2011)

    Article  ADS  Google Scholar 

  3. P. Salières, A. Maquet, S. Haessler, J. Caillat, R. Taïeb, Imaging orbitals with attosecond and Angström resolutions: Toward attosecond chemistry? Rep. Prog. Phys. 75, 062401 (2012)

    Article  ADS  Google Scholar 

  4. C. von Korff Schmising, M. Bargheer, M. Kiel, N. Zhavoronkov, M. Woerner, T. Elsaesser, I. Vrejoiu, D. Hesse, M. Alexe, Accurate time delay determination for femtosecond X-ray diffraction experiments. Appl. Phys. B 88(1), 1–4 (2007)

  5. A. Horn, Ultra-Fast Material Metrology (Wiley-VCH, Weinheim, 2009)

    Book  Google Scholar 

  6. T.Q. Jia, H.X. Chen, M. Huang, F.L. Zhao, X.X. Li, S.Z. Xu, H.Y. Sun, D.H. Feng, C.B. Li, X.F. Wang, R.X. Li, Z.Z. Xu, X.K. He, H. Kuroda, Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals. Phys. Rev. B 73, 054105 (2006)

    Article  ADS  Google Scholar 

  7. N. Šiaulys, L. Gallais, A. Melninkaitis, Direct holographic imaging of ultrafast laser damage process in thin films. Opt. Lett. 39, 2164 (2014)

    Article  ADS  Google Scholar 

  8. A. Mouskeftaras, S. Guizard, N. Fedorov, S. Klimentov, Mechanisms of femtosecond laser ablation of dielectrics revealed by double pump–probe experiment. Appl. Phys. A 110, 709 (2013)

    Article  ADS  Google Scholar 

  9. M. Garcia-Lechuga, J. Siegel, J. Hernandez-Rueda, J. Solis, Imaging the ultrafast Kerr effect, free carrier generation, relaxation and ablation dynamics of Lithium Niobate irradiated with femtosecond laser pulses. J. Appl. Phys. 116(11), 113502 (2014)

    Article  ADS  Google Scholar 

  10. M. Lebugle, N. Sanner, N. Varkentina, M. Sentis, O. Utéza, Dynamics of femtosecond laser absorption of fused silica in the ablation regime. J. Appl. Phys. 116, 063105 (2014)

    Article  ADS  Google Scholar 

  11. M. Hada, K. Pichugin, G. Sciaini, Ultrafast structural dynamics with table top femtosecond hard X-ray and electron diffraction setups. Eur. Phys. J. Spec. Top. 222, 1093 (2013)

    Article  Google Scholar 

  12. A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I.V. Hertel, Y.P. Meshcheryakov, N.M. Bulgakova, E. Audouard, R. Stoian, Dynamics of femtosecond laser induced voidlike structures in fused silica. Appl. Phys. Lett. 94, 041911 (2009)

    Article  ADS  Google Scholar 

  13. M. Domke, S. Rapp, M. Schmidt, H.P. Huber, Ultrafast pump-probe microscopy with high temporal dynamic range. Opt. Express 20, 10330 (2012)

    Article  ADS  Google Scholar 

  14. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Pulses (Kluwer Academic Publishers, Dordrecht, 2002)

    Google Scholar 

  15. H. Kano, H. Hamaguchi, Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy. Opt. Lett. 28, 2360 (2003)

    Article  ADS  Google Scholar 

  16. J.M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, R.S. Windeler, Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments. Opt. Express 10, 1215 (2002)

    Article  ADS  Google Scholar 

  17. R.W. Boyd, Nonlinear Optics (Academic Press, London, 1992)

    Google Scholar 

  18. B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Optical ablation by high-power short-pulse lasers. J. Opt. Soc. Am. B 13, 459 (1996)

    Article  ADS  Google Scholar 

  19. B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, J.C. Kieffer, Damage and ablation thresholds of fused-silica in femtosecond regime. Phys. Rev. B 84, 094104 (2011)

    Article  ADS  Google Scholar 

  20. R.G. Brown, P.Y.C. Hwang, Introduction to Random Signals and Applied Kalman Filtering, 3rd edn. (Wiley, London, 1996)

    Google Scholar 

  21. K. Waedegaard, M. Frislev, P. Balling, Femtosecond laser excitation of dielectric materials: experiments and modeling of optical properties and ablation depths. Appl. Phys. A 110, 601 (2013)

    Article  ADS  Google Scholar 

  22. G.M. Petrov, J. Davis, Interaction of intense ultra-short laser pulses with dielectrics. J. Phys. B At. Mol. Opt. Phys. 41, 025601 (2008)

    Article  ADS  Google Scholar 

  23. M. Lebugle, N. Sanner, O. Utéza, M. Sentis, Guidelines for efficient direct ablation of dielectrics with single femtosecond pulses. Appl. Phys. A 114, 129 (2014)

    Article  ADS  Google Scholar 

  24. N.M. Bulgakova, V.P. Zhukov, Y.P. Meshcheryakov, Theoretical treatments of ultrashort pulse laser processing of transparent materials: toward understanding the volume nanograting formation and “quill” writing effect. Appl. Phys. B 113, 437 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The French National Agency of Research (ANR) (contract Nanomorphing-07-BLAN-0301-03), the Region Provence-Alpes-Côte d’Azur, the Department of Bouches-du-Rhône and the OPTITEC Competitiveness Cluster are gratefully acknowledged for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sanner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebugle, M., Utéza, O., Sentis, M. et al. High temporal resolution and calibration in pump–probe experiments characterizing femtosecond laser–dielectrics interaction. Appl. Phys. A 120, 455–461 (2015). https://doi.org/10.1007/s00339-015-9231-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9231-z

Keywords

Navigation