Skip to main content
Log in

Positron annihilation measurements in high-energy alpha-irradiated n-type Gallium Arsenide

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Positron annihilation lifetime spectroscopy and Doppler broadening annihilation line-shape measurements have been carried out in 40-MeV alpha-irradiated n-type GaAs. After irradiation, the sample has been subjected to an isochronal annealing over temperature region of 25–800 °C with an annealing time of 30 min at each set temperature. After each annealing, the positron measurements are taken at room temperature. Formation of radiation-induced defects and their recovery with annealing temperature are investigated. The lifetime spectra of the irradiated sample have been fitted with two lifetimes. The average positron lifetime τavg = 244 ps at room temperature after irradiation indicates the presence of defects, and the value of τ2 (262 ps) at room temperature suggests that the probable defects are mono-vacancies. Two distinct annealing stages in τavg at 400–600 °C and at 650–800 °C are observed. The variations in line-shape parameter (S) and defect-specific parameter (R) during annealing in the temperature region 25–800 °C resemble the behaviour of τavg indicating the migration of vacancies, formation of vacancy clusters and the disappearance of defects between 400 and 800 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.F. Galashan, S.W. Bland, J. Appl. Phys. 67, 173 (1990)

    Article  ADS  Google Scholar 

  2. A.R. Knudson, A.B. Campbell, W.J. Stapor, P. Shapiro, G.P. Mueller, IEEE Trans. NS-32, 4388 (1985)

    ADS  Google Scholar 

  3. S.A. Goodman, F.D. Auret, G. Myburg, Appl. Phys. A 59, 305 (1994)

    Article  ADS  Google Scholar 

  4. H.Y. Fan, in 7th International Conference on the Physics of Semiconductors (Radiation damage in Semiconductors) (Paris-Royaumont, 1964), p. 1

  5. G.D. Watkins, J.W. Corbett, Phys. Rev. 138, 543 (1965)

    Article  ADS  Google Scholar 

  6. L.J. Cheng, J.C. Correlli, J.W. Corbett, G.D. Watkins, Phys. Rev. 152, 761 (1996)

    Article  ADS  Google Scholar 

  7. B.G. Svensson, B. Mohadjeri, A. Hallén, J.H. Svensson, J.W. Corbett, Phys. Rev. B 43, 2292 (1991)

    Article  ADS  Google Scholar 

  8. R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors, vol. 127 (Springer Series in Solid-State Sciences, Berlin, 1999)

    Google Scholar 

  9. K. Saarinen, P. Hautojärvi, C. Corbel, in Identification of Defects in Semiconductors, ed. by M. Stavola (Academic, New York, 1998)

    Google Scholar 

  10. L.W. Aukerman, R.D. Grail, Phys. Rev. 127, 1576 (1962)

    Article  ADS  Google Scholar 

  11. H. Stein, J. Appl. Phys. 40, 5300 (1969)

    Article  ADS  Google Scholar 

  12. D.V. Lang, L.C. Kimerling, S.Y. Leung, J. Appl. Phys. 47, 3587 (1976)

    Article  ADS  Google Scholar 

  13. G.E. Brehm, G.L. Pearson, J. Appl. Phys. 43, 568 (1972)

    Article  ADS  Google Scholar 

  14. P.L. Pegler, J.A. Grimshaw, P.C. Banbury, Radiat Eff 15, 183 (1972)

    Article  Google Scholar 

  15. A.D. Pogrebnyak, V.S. Lopatin, R.G. Ziyakaev, S.A. Vorobiev, Phys. Lett. A 97, 362 (1983)

    Article  ADS  Google Scholar 

  16. T.I. Kolchenko, V.M. Lomako, Radiat. Eff. 37, 67 (1978)

    Article  Google Scholar 

  17. L.J. Cheng, J.P. Karins, J.W. Corbett, J. Appl. Phys. 50, 2962 (1979)

    Article  ADS  Google Scholar 

  18. K.P. Aref’ev, V.N. Brudnyi, D.L. Budnitskii, S.A. Vorob’ev, A.A. Tsoi, Sov. Phys. Semicond. 13, 669 (1979)

    Google Scholar 

  19. A. Sen Gupta, S.V. Naidu, P. Sen, Appl. Phys. A 40, 95 (1986)

    Article  ADS  Google Scholar 

  20. C. Corbel, M. Stucky, P. Hautojärvi, K. Saarinen, P. Moser, Phys. Rev. B 38, 8192 (1988)

    Article  ADS  Google Scholar 

  21. P. Kirkegaard, M. Eldrup, Comput. Phys. Commun. 3, 240 (1972)

    Article  ADS  Google Scholar 

  22. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985)

    Google Scholar 

  23. H. Li, Z. Wang, K. Zhou, J. Pang, J. Ke, Y. Zhao, J. Optoelectron. Adv. Mater. 11, 1122 (2009)

    Google Scholar 

  24. S. Pan, A. Mandal, S. Mukherjee, A.K. Saha, A. Roychowdhury, D. Das, A. Sengupta, Int. J. Mod. Phys. B 28, 1450210 (2014)

    Article  ADS  Google Scholar 

  25. S. Pan, A. Mandal, A. Roychowdhury, A. Sengupta, Int. J. Eng. Sci. Innov. Technol. 3, 135 (2014)

    Google Scholar 

  26. G. Dlubek, R. Krause, Phys. Status Solidi (a) 102, 443 (1987)

    Article  ADS  Google Scholar 

  27. K. Saarinen, S. Kuisma, P. Hautojärvi, C. Corbel, C. LeBerre, Phys. Rev. B 49, 8005 (1994)

    Article  ADS  Google Scholar 

  28. J. Gebauer, R. Krause-Rehberg, C. Domke, Ph Ebert, K. Urban, Phys. Rev. Lett. 78, 3334 (1997)

    Article  ADS  Google Scholar 

  29. S. Dannefaer, B. Hogg, D. Kerr, Phys. Rev. B 30, 6 (1984)

    Article  Google Scholar 

  30. R.N. West, Adv. Phys. 22, 263 (1977)

    Article  ADS  Google Scholar 

  31. G. Dlubek, O. Brummer, F. Plazaola, P. Hautojarvi, J. Phys. C Solid State Phys. 19, 331 (1986)

    Article  ADS  Google Scholar 

  32. A. Alam, R.N. West, J. Phys. F 12, 389 (1982)

    Article  ADS  Google Scholar 

  33. L.P. Karjabinen, T. Judin, M. Karras, in Positron annihilation, vol. 461, ed. by P.G. Coleman, S.C. Sharma, L.M. Diana (North-Holland, Amsterdam, 1982)

    Google Scholar 

  34. S. Mantl, W. Triftshauser, Phys. Rev. Lett. 34, 1554 (1975)

    Article  ADS  Google Scholar 

  35. D. Pons, A. Mircea, J. Bourgoin, J. Appl. Phys. 51, 4150 (1980)

    Article  ADS  Google Scholar 

  36. D. Stievenard, J.E. Bourgoin, D. Pons, Physica 116B, 394 (1983)

    Google Scholar 

  37. A. Mircea, D. Bois, Defects and Radiation Effects in Semiconductors, Inst. Phys. Conf. Ser. 46 (1978)

  38. J.W. Cleland, R.F. Bass, J.H. Crawford Jr, in 7th International Conference on the Physics of Semiconductors (Radiation damage in Semiconductors) (Paris-Royaumont, 1964), p. 401

  39. F.H. Eisen, in 7th International Conference on the Physics of Semiconductors (Radiation damage in Semiconductors) (Paris-Royaumont, 1964), p. 367

Download references

Acknowledgments

The authors acknowledged the crew members of Variable Energy Cyclotron Centre (VECC) for irradiation experiments at Kolkata and Dr. D. Das, UGC-DAE Consortium for Scientific Research, Kolkata Centre, Kolkata-98, for providing the positron annihilation measurement facility. The work is sponsored by SERC Division, DST, Government of India, project No. SR/S2/CMP-57/2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asmita SenGupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, S., Mandal, A., Roychowdhury, A. et al. Positron annihilation measurements in high-energy alpha-irradiated n-type Gallium Arsenide. Appl. Phys. A 120, 221–227 (2015). https://doi.org/10.1007/s00339-015-9155-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9155-7

Keywords

Navigation