Skip to main content

Advertisement

Log in

Picosecond laser generation of Ag–TiO2 nanoparticles with reduced energy gap by ablation in ice water and their antibacterial activities

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ag–TiO2 nanoparticles were synthesised in ice water using a picosecond laser with a 1064-nm wavelength, at a 200-kHz repetition rate, a laser pulse energy of 42–43.79 µJ, and laser fluences of 0.342–0.357 J/cm2, by ablation of solid Ag and Ti targets. The absorption spectra and size distribution of the colloidal nanoparticles were obtained by UV–Vis spectroscopy and transmission electron microscopy, respectively. The morphology and chemical composition of the nanoparticles were characterised using high-angle annular dark-field-scanning transmission electron microscope and energy-dispersive X-ray spectroscopy. The results show that the sizes of the Ag–TiO2 nanoparticles range from less than 10–130 nm, with some large particles above 130 nm, of which the predominant size is 20 nm. A significant reduction in the energy gap of TiO2 nanoparticles was obtained to 1.75 eV after the modification with Ag nanoparticles during co-ablation. The role of Ag nanoparticles in the reduction in the energy band gap of the TiO2 nanoparticles can only be seen during laser ablation in an ice environment but not in deionised water at room temperature. Furthermore, the TiO2 nanoparticles were produced in ice and deionised water under the same laser and experimental conditions; the results show that the nanoparticles in both media have the same energy gap (about 2.4 eV). The antibacterial activity of the Ag–TiO2 nanoparticles generated was then tested against E. coli bacteria under standard laboratory light conditions. The results show that the nanoparticles can effectively kill E. coli bacteria much more effectively than laser-generated TiO2 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Gupta, R. Singh, A. Pandey, A. Pandey, Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus, P. aeruginosa and E. coli. Beilstein. J. Nanotechnol. 4(1), 345–351 (2013)

    Google Scholar 

  2. M. Lazar, S. Varghese, S. Nair, Photocatalytic water treatment by titanium dioxide: recent updates. Catalysts 2(4), 572–601 (2012)

    Article  Google Scholar 

  3. L. Graziani, E. Quagliarini, F. Bondioli, M. D’Orazio, Durability of self-cleaning TiO2 coatings on fired clay brick façades: effects of UV exposure and wet and dry cycles. Build. Environ. 71, 193–203 (2014)

    Article  Google Scholar 

  4. X. Yang, H. Fu, K. Wong, X. Jiang, A. Yu, Hybrid Ag@ TiO2 core–shell nanostructures with highly enhanced photocatalytic performance. Nanotechnology 24(41), 415601 (2013)

    Article  Google Scholar 

  5. M.M. Khan, S.A. Ansari, M.I. Amal, J. Lee, M.H. Cho, Highly visible light active Ag@ TiO 2 nanocomposites synthesized using an electrochemically active biofilm: a novel biogenic approach. Nanoscale 5(10), 4427–4435 (2013)

    Article  ADS  Google Scholar 

  6. R. Chauhan, A. Kumar, R. Chaudhary, Structural and optical characterization of Ag-doped TiO2 nanoparticles prepared by a sol–gel method. Res. Chem. Intermed. 38(7), 1443–1453 (2012)

    Article  Google Scholar 

  7. I. Tamiolakis, S. Fountoulaki, N. Vordos, I.N. Lykakis, G.S. Armatas, Mesoporous Au–TiO2 nanoparticle assemblies as efficient catalysts for the chemoselective reduction of nitro compounds. J. Mater. Chem. A 1(45), 14311–14319 (2013)

    Article  Google Scholar 

  8. T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett. 81(3), 454–456 (2002)

    Article  ADS  Google Scholar 

  9. T. Umebayashi, T. Yamaki, S. Yamamoto, A. Miyashita, S. Tanaka, T. Sumita, K. Asai, Sulfur-doping of rutile-titanium dioxide by ion implantation: photocurrent spectroscopy and first-principles band calculation studies. J. Appl. Phys. 93(9), 5156–5160 (2003)

    Article  ADS  Google Scholar 

  10. S.I. Shah, C. Huang, J. Chen, D. Doren, M. Barteau, Semiconductor Metal Oxide Nanoparticles for Visible Light Photocatalysis. Nanoscale Science and Engineering Grantees Conference, Grant No. 0210284 (2003)

  11. S. Yu, H.J. Yun, D.M. Lee, J. Yi, Preparation and characterization of Fe-doped TiO2 nanoparticles as a support for a high performance CO oxidation catalyst. J. Mater. Chem. 22(25), 12629–12635 (2012)

    Article  Google Scholar 

  12. R. Chauhan, A. Kumar, R.P. Chaudhary, Structural and photocatalytic studies of Mn doped TiO2 nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 98, 256–264 (2012)

    Article  ADS  Google Scholar 

  13. W. Zhou, Q. Liu, Z. Zhu, J. Zhang, Preparation and properties of vanadium-doped TiO2 photocatalysts. J. Phys. D Appl. Phys. 43(3), 035301 (2010)

    Article  ADS  Google Scholar 

  14. J. Mungkalasiri, L. Bedel, F. Emieux, J. Doré, F.N.R. Renaud, C. Sarantopoulos, F. Maury, CVD elaboration of nanostructured TiO2–Ag thin films with efficient antibacterial properties. Chem. Vap. Depos. 16(1–3), 35–41 (2010)

    Article  Google Scholar 

  15. S. Baskoutas, A.F. Terzis, Size-dependent band gap of colloidal quantum dots. J. Appl. Phys. 99(1), 013708 (2006)

    Article  ADS  Google Scholar 

  16. Z. Lu, K. Rong, J. Li, H. Yang, R. Chen, J. Mater. Sci. Mater. Med. 24(6), 1465–1471 (2013)

    Article  Google Scholar 

  17. S. Pal, Y.K. Tak, J.M. Song, Appl. Environ. Microbiol. 73(6), 1712–1720 (2007)

    Article  Google Scholar 

  18. C.P. Adams, K.A. Walker, S.O. Obare, K.M. Docherty, PLoS One 9(1), e85981 (2014)

    Article  ADS  Google Scholar 

  19. C. Buzea, I. Pacheco, K. Robbie, Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4), MR17–MR71 (2007)

    Article  Google Scholar 

  20. X. Pan, I. Medina-Ramirez, R. Mernaugh, J. Liu, Colloids Surf. B 77(1), 82–89 (2010)

    Article  Google Scholar 

  21. F. Tian, J. Sun, J. Yang, P. Wu, H.-L. Wang, X.-W. Du, Preparation and photocatalytic properties of mixed-phase titania nanospheres by laser ablation. Mater. Lett. 63(27), 2384–2386 (2009)

    Article  Google Scholar 

  22. D. Reyes-Coronado, G. Rodriguez-Gattorno, M. Espinosa-Pesqueira, C. Cab, R. De Coss, G. Oskam, Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19(14), 145605 (2008)

    Article  ADS  Google Scholar 

  23. J.-G. Li, T. Ishigaki, X. Sun, Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: phase-selective synthesis and physicochemical properties. J. Phys. Chem. C 111(13), 4969–4976 (2007)

    Article  Google Scholar 

  24. R. López, R. Gómez, Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J. Sol-Gel Sci. Technol. 61(1), 1–7 (2012)

    Article  Google Scholar 

  25. K.M. Reddy, S.V. Manorama, A. Ramachandra Reddy, Bandgap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 78(1), 239–245 (2003)

    Article  Google Scholar 

  26. K.C. Verma, J. Singh, M. Ram, D.K. Sharma, A. Sharma, R. Kotnala, Enhancement in the magnetic, optical and electrical properties of Ti0. 97Co0. 03O2 and Ti0. 97Fe0. 03O2 nanoparticles with Ce co-doping. Phys. Scr. 86(2), 025704 (2012)

    Article  ADS  Google Scholar 

  27. J.-Y. Oh, S.-C. Lim, S.D. Ahn, S.S. Lee, K.-I. Cho, J.B. Koo, R. Choi, M. Hasan, Facile one-step synthesis of magnesium-doped ZnO nanoparticles: optical properties and their device applications. J. Phys. D Appl. Phys. 46(28), 285101 (2013)

    Article  Google Scholar 

  28. Y. Chen, D. Li, X. Wang, L. Wu, X. Wang, X. Fu, Promoting effects of H2 on photooxidation of volatile organic pollutants over Pt/TiO2. New J. Chem. 29(12), 1514–1519 (2005)

    Article  Google Scholar 

  29. D. Tsukamoto, A. Shiro, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai, Photocatalytic H2O2 production from ethanol/O2 system using TiO2 loaded with Au–Ag bimetallic alloy nanoparticles. ACS Catal. 2(4), 599–603 (2012)

    Article  Google Scholar 

  30. J.I. Pankove, Optical Process in Semiconductors (Prentice-Hall, Englewood Cliffs, 1971)

    Google Scholar 

  31. I. Medina-Ramirez, Z. Luo, S. Bashir, R. Mernaugh, J.L. Liu, Facile design and nanostructural evaluation of silver-modified titania used as disinfectant. Dalton Trans. 40(5), 1047–1054 (2011)

    Article  Google Scholar 

  32. N.G. Semaltianos, S. Logothetidis, N. Frangis, I. Tsiaoussis, W. Perrie, G. Dearden, K.G. Watkins, Laser ablation in water: a route to synthesize nanoparticles of titanium monoxide. Chem. Phys. Lett. 496(1–3), 113–116 (2010)

    Article  Google Scholar 

  33. H. Chang-Ning, B. Jong-Shing, Z. Yuyuan, C. Shuei-Yuan, H. NewJin, S. Pouyan, Nonstoichiometric titanium oxides via pulsed laser ablation in water. Nanoscale Res. Lett. 5, 972–985 (2010)

    Article  ADS  Google Scholar 

  34. T. Tsuji, K. Iryo, N. Watanabe, M. Tsuji, Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Appl. Surf. Sci. 202(1–2), 80–85 (2002)

    Article  ADS  Google Scholar 

  35. T. Tsuji, K. Iryo, Y. Nishimura, M. Tsuji, Preparation of metal colloids by a laser ablation technique in solution: influence of laser wavelength on the ablation efficiency (II). J. Photochem. Photobiol. A 145(3), 201–207 (2001)

    Article  Google Scholar 

  36. T. Sasaki, C. Liang, W.T. Nichols, Y. Shimizu, N. Koshizaki, Fabrication of oxide base nanostructures using pulsed laser ablation in aqueous solutions. Appl. Phys. A 79(4–6), 1489–1492 (2004)

    ADS  Google Scholar 

  37. M. Williams, Optical Properties of Snow (Civil and Environmental Engineering, The University of Utah, 2000) (http://www.civil.utah.edu/~cv5450/Remote/AVIRIS/optics.html). Accessed 3 Nov 2014

  38. E.J. Peterman, F. Gittes, C.F. Schmidt, Laser-induced heating in optical traps. Biophys. J. 84(2), 1308–1316 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abubaker Hamad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamad, A., Li, L., Liu, Z. et al. Picosecond laser generation of Ag–TiO2 nanoparticles with reduced energy gap by ablation in ice water and their antibacterial activities. Appl. Phys. A 119, 1387–1396 (2015). https://doi.org/10.1007/s00339-015-9111-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9111-6

Keywords

Navigation