Skip to main content
Log in

Adhesion and spreading of Ag nanoparticles on SiO2 substrates by molecular dynamics simulation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To validate the present theoretical study of the adhesion and spreading of Ag nanoparticles on a SiO2 substrate, the pull-off force of Ag nanoparticles from a SiO2 substrate and optimum temperature required to make uniform thin Ag film on a SiO2 obtained by the present study are compared to those of experimental studies. Effects of Ag nanoparticle size and temperature on the pull-off force from the SiO2 substrate are studied using molecular dynamics simulations to understand the stability of Ag nanoparticles on a SiO2 substrate because the smoothness of its surface depends on the stability of Ag nanoparticles due to the application of the external force during its operation. During lateral sliding of Ag nanoparticle on a SiO2 substrate, a resistance force is developed which depends on the resultant adhesive force along the lateral direction of the SiO2 substrate. Effects of sizes of Ag nanoparticle on the lateral adhesive force are studied during sliding on a SiO2 substrate. Due to the dispersive adhesive force, Ag nanoparticle spreads on the SiO2 substrate. Effects of temperature on the spreading phenomenon of Ag nanoparticle on a SiO2 substrate are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Joo, D.F. Baldwin, Nanotechnology 21, 055204 (2010)

    Article  ADS  Google Scholar 

  2. C.-Y. Lee, M. Dupeux, W.H. Tuan, Mater. Sci. Eng. A 467, 125 (2007)

    Article  Google Scholar 

  3. A.P. Piedade, M.T. Vieira, A. Martins, F. Silva, Nanotechnology 18, 105103 (2007)

    Article  ADS  Google Scholar 

  4. E.G. Matveeva, I. Gryczynski, A. Barnett, Z. Leonenko, J.R. Lakowicz, Z. Gryczynski, Anal. Biochem. 363, 239 (2007)

    Article  Google Scholar 

  5. D.R. Sahu, C.Y. Chen, S.Y. Lin, J.-L. Huang, Thin Solid Films 515, 932 (2006)

    Article  ADS  Google Scholar 

  6. A. Hozumi, S. Kojima, S. Nagano, T. Seki, N. Shirahata, T. Kameyama, Langmuir 23, 3265 (2007)

    Article  Google Scholar 

  7. A.L.D. Vechio, F. Spaepen, J. Appl. Phys. 101, 063518 (2007)

    Article  ADS  Google Scholar 

  8. M. Raffi, J.I. Akhter, M.M. Hasan, Mater. Chem. Phys. 99, 405 (2006)

    Article  Google Scholar 

  9. J.-C. Bradley, S. Babu, B. Carroll, A. Mittal, J. Electroanal. Chem. 522, 75 (2002)

    Article  Google Scholar 

  10. S. Joo, D.F. Baldwin, IEEE Trans. Electron. Packag. Manuf. 33, 129 (2010)

    Article  Google Scholar 

  11. N. Singh, P.K. Rashmi, K. Gupta, K.N. Sood, Rev. Anal. Chem. 25, 307–316 (2006)

    Google Scholar 

  12. A. Gautam, G.P. Singh, S. Ram, Synth. Met. 157, 5 (2007)

    Article  Google Scholar 

  13. D. Roy, J. Fendler, Adv. Mater. 16, 479 (2004)

    Article  Google Scholar 

  14. J.J. Blaker, S.N. Nazhat, A.R. Boccaccini, Biomaterials 25, 1319 (2004)

    Article  Google Scholar 

  15. J.T.G. Overbeek, M.J. Sparnaay, J. Colloid Sci. 7, 343–345 (1952)

    Article  Google Scholar 

  16. M.J. Vold, J. Colloid Sci. 9, 451 (1954)

    Article  Google Scholar 

  17. R.A. Bowling, in Particles on Surfaces 1, ed. by K.L. Mittal (Plenum Press, New York, 1988), p. 129

    Chapter  Google Scholar 

  18. H. Krupp, Adv. Colloid Interface Sci. 1, 111 (1967)

    Article  Google Scholar 

  19. B.V. Derjaguin, I.N. Aleinikova, Y.P. Toporov, Powder Technol. 2, 154 (1969)

    Article  Google Scholar 

  20. B.V. Derjaguin, Y.P. Toporov, I.N. Aleinikova, J. Colloid Interface Sci. 54, 59 (1976)

    Article  Google Scholar 

  21. B.V. Derjaguin, V.M. Muller, Y.P. Toporov, I.N. Aleinikova, Powder Technol. 37, 87 (1984)

    Article  Google Scholar 

  22. N. Agrait, G. Rubio, S. Vieira, Phys. Rev. Lett. 74, 3995 (1995)

    Article  ADS  Google Scholar 

  23. W.H. Qi, M.P. Wang, J. Mater. Sci. Lett. 21, 1743 (2002)

    Article  Google Scholar 

  24. S.K. Deb Nath, Int. J. Non-Cryst. Solids 376, 50 (2013)

    Article  ADS  Google Scholar 

  25. M.S. Daw, M.I. Baskes, Phys. Rev. B 29, 6443 (1984)

    Article  ADS  Google Scholar 

  26. S. Munetoh, K. Moriguchi, K. Kamei, A. Shintani, T. Motooka, Phys. Rev. Lett. 86, 4879 (2001)

    Article  ADS  Google Scholar 

  27. B. Kang, S.K. Deb Nath, H.C. Kim, S.G. Kim, J. Appl. Phys. 115, 063103 (2014)

    Article  ADS  Google Scholar 

  28. A.E. Galashev, V.A. Polukhin, Colloid J. 73, 764 (2011)

    Google Scholar 

  29. J. Katainen, M. Paajanen, E. Ahtola, V. Pore, J. Lahtinen, J. Colloid Interface Sci. 304, 524 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Deb Nath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deb Nath, S.K. Adhesion and spreading of Ag nanoparticles on SiO2 substrates by molecular dynamics simulation. Appl. Phys. A 119, 1379–1385 (2015). https://doi.org/10.1007/s00339-015-9110-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9110-7

Keywords

Navigation