Skip to main content
Log in

Conduction behavior conversion for Cu-doped ZnS/n-type Si devices with different Cu contents

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Currents through Cu-doped ZnS (ZnCuS)/n-type Si structures were studied. The electrical conduction investigations suggest that the carrier transport behavior is governed by the Poole–Frenkel emission for ZnCuS/n-type Si devices having the low Cu concentration. However, the carrier transport behavior is governed by the thermionic emission for ZnCuS/n-type Si devices having the high Cu concentration. The photoluminescence result revealed that sulfur vacancy (V S) is the origin of conduction behavior conversion. It is shown that the increased Cu concentration leads to the reduced formation probability of V S. The dependence of V S on the film composition was identified for providing a guide to control the current transport behavior of ZnCuS/n-type Si devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Yang, M. Ichimura, Jpn. J. Appl. Phys. 50, 040202 (2011)

    Article  ADS  Google Scholar 

  2. D. Denzler, M. Olschewski, K. Sattler, J. Appl. Phys. 84, 2841 (1998)

    Article  ADS  Google Scholar 

  3. B. Bhattacharjee, C.H. Lu, Thin Solid Films 514, 132 (2006)

    Article  ADS  Google Scholar 

  4. X. Wnag, J. Shi, Z. Feng, M. Li, C. Li, Phys. Chem. Chem. Phys. 13, 4715 (2011)

    Article  Google Scholar 

  5. W.G. Becker, A.J. Bard, J. Phys. Chem. 87, 4888 (1983)

    Article  Google Scholar 

  6. W. Chen, Z. Wang, Z. Lin, L. Lin, J. Appl. Phys. 82, 3111 (1997)

    Article  ADS  Google Scholar 

  7. A.K. Kole, P. Kumbhakar, U. Chatterjee, Appl. Phys. Lett. 100, 013103 (2012)

    Article  ADS  Google Scholar 

  8. S. Park, C. Jin, H. Kim, C. Hong, C. Lee, J. Lumin. 132, 231 (2012)

    Article  Google Scholar 

  9. T. Kryshtab, V.S. Khomchenko, J.A. Andraca-Adame, A.K. Savin, A. Kryvko, G. Juárez, R. Peña-Sierra, J. Lumin. 129, 1677 (2009)

    Article  Google Scholar 

  10. T. Yamamoto, S. Kishimoto, S. Iida, Phys. B 308–310, 916 (2001)

    Article  Google Scholar 

  11. M. Bredol, J. Merichi, J. Mater. Sci. 33, 471 (1998)

    Article  ADS  Google Scholar 

  12. V.L. Gayou, B. Salazer-Hernandez, M.E. Constantio, Vacuum 84, 1191 (2010)

    Article  Google Scholar 

  13. L.W. Ji, Y.J. Hsiao, I. Tang, T.H. Meen, C.H. Liu, J.K. Tsai, T.C. Wu, Y.S. Wu, Nanoscale Res. Lett. 8, 470 (2013)

    Article  ADS  Google Scholar 

  14. P. Hazdra, D.J. Reeve, D. Sands, Appl. Phys. A 61, 637 (1995)

    Article  ADS  Google Scholar 

  15. J. Huang, L.J. Wang, K. Tang, R. Xu, J.J. Zhang, Chin. Phys. Lett. 28, 127301 (2011)

    Article  ADS  Google Scholar 

  16. C.B. Thomas, D. Sands, K. Brunson, Appl. Phys. Lett. 51, 195 (1987)

    Article  ADS  Google Scholar 

  17. M. Dula, K. Yang, M. Ichimura, Semicond. Sci. Technol. 27, 125007 (2012)

    Article  Google Scholar 

  18. A.M. Diamond, L. Corbellini, K.R. Balasubramaniam, S. Chen, S. Wang, T.S. Matthews, L.W. Wang, R. Ramesh, J.W. Ager, Phys. Stat. Sol. A 209, 2101 (2012)

    Article  ADS  Google Scholar 

  19. E. Bacaksiz, T.D. Dzhafarov, V.D. Novruzov, K. Ozturk, M. Tomakin, T. Kucukomeroglu, M. Altunbas, E. Yanmaz, B. Abay, Phys. Stat. Sol. A 201, 2948 (2004)

    ADS  Google Scholar 

  20. M.S. Sreejith, D.R. Deepu, C. Sudha Kartha, K. Rajeevkumar, K.P. Vijayakumar, Appl. Phys. Lett. 105, 202107 (2014)

    Article  Google Scholar 

  21. C. Yim, N. McEvoy, G.S. Duesberg, Appl. Phys. Lett. 103, 193106 (2013)

    Article  ADS  Google Scholar 

  22. M.Y. Ali, M. Tao, J. Appl. Phys. 101, 103708 (2007)

    Article  ADS  Google Scholar 

  23. J.C. Nolasco, R. Cabré, J. Ferré-Borrull, L.F. Marsal, M. Estrada, J. Pallarès, J. Appl. Phys. 107, 044505 (2010)

    Article  ADS  Google Scholar 

  24. G.D. Yuan, W.J. Zhang, W.F. Zhang, X. Fan, I. Bello, C.S. Lee, S.T. Lee, Appl. Phys. Lett. 93, 213102 (2008)

    Article  ADS  Google Scholar 

  25. J.A. Dean, Lange’s Handbook of Chemistry (McGRAW-Hill, New York, 1999)

    Google Scholar 

  26. D.A. Neamen, Semiconductor Physics and Devices: Basic Principles, 3rd edn. (McGraw-Hill, Boston, 2003)

    Google Scholar 

  27. D.K. Schroder, Semiconductor Material and Device Characterization, 3rd edn. (Wiley, New Jersey, 2006)

    Google Scholar 

  28. Y.P. Gong, A.D. Li, X. Qian, C. Zhao, D. Wu, J. Phys. D Appl. Phys. 42, 015405 (2009)

    Article  ADS  Google Scholar 

  29. K.Y. Cheong, J.H. Moon, H.J. Kim, W. Bahng, N.K. Kim, J. Appl. Phys. 103, 084113 (2008)

    Article  ADS  Google Scholar 

  30. J.K. Chen, K.L. Tang, T.P. Tang, J.T. Chang, Jpn. J. Appl. Phys. 47, 5539 (2008)

    Article  ADS  Google Scholar 

  31. B. Brar, R. Stczinhoff, A. Seabaugh, X. Zhou, S. Jiang, W.P. Kirk, Band offset measurement of the ZnS/Si(001) heterojunction, 1997 IEEE International Symposium on Compound Semiconductors, pp. 167–170 (1997). doi:10.1109/ISCS.1998.711606

  32. S.R. Pollack, J. Appl. Phys. 34, 877 (1963)

    Article  ADS  Google Scholar 

  33. R.T. Tung, Phys. Rev. B 45, 13509 (1992)

    Article  ADS  Google Scholar 

  34. S. Zhu, R.L. Van Meirhaeghe, C. Detavernier, F. Cardon, G.P. Ru, X.P. Qu, B.Z. Li, Solid State Electron. 44, 663 (2000)

    Article  ADS  Google Scholar 

  35. J.H. Lin, J.J. Zeng, Y.J. Lin, Thin Solid Films 550, 582 (2014)

    Article  ADS  Google Scholar 

  36. W.S. Ni, Y.J. Lin, C.J. Liu, Y.W. Yang, L. Horng, J. Alloys Compd. 556, 178 (2013)

    Article  Google Scholar 

  37. W.S. Ni, Y.J. Lin, J. Appl. Phys. 112, 063712 (2012)

    Article  ADS  Google Scholar 

  38. D. Wolffram, D.A. Evans, G. Neuhold, K. Horn, J. Appl. Phys. 87, 3905 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the Ministry of Science and Technology, Taiwan (Contract No. 103-2112-M-018-003-MY3) in the form of grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yow-Jon Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, WS., Lin, YJ. Conduction behavior conversion for Cu-doped ZnS/n-type Si devices with different Cu contents. Appl. Phys. A 119, 1127–1132 (2015). https://doi.org/10.1007/s00339-015-9079-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9079-2

Keywords

Navigation