Skip to main content
Log in

Effect of solvent and PVP on electrode conductivity in laser-induced reduction process

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Laser sintering process is a promising technique which can sinter an electrode pattern selectively without mask. In this study, metal oxide nanoparticle with several solvents and various molar ratio of polyvinylpyrrolidone (PVP) is prepared to optimize a fabrication of a copper electrode pattern. As a result, the solvent with exothermic heat flow and low absorption cross-section shows better pattern shape and higher conductivity in selective laser sintering. Additionally, PVP, a reductant, affects to the quality of electrode, too. High molar ratio and large amount of PVP make the laser sintering process window broad and the specific resistivity low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.E. Cohen, R.R. Kunz, Large-area interdigitated array microelectrodes for electrochemical sensing. Sens. Actuators B 62, 23–29 (2000)

    Article  Google Scholar 

  2. A. Tsigara, A. Benkhial, S. Warren, F. Akkari, J. Wright, F. Frehill, E. Dempsey, Metal microelectrode nanostructuring using nanosphere lithography and photolithography with optimization of the fabrication process. Thin Solid Film 537, 269–274 (2013)

    Article  ADS  Google Scholar 

  3. W.S. Beh, I.T. Kim, D. Qin, Y. Xia, G.M. Whitesides, Formation of patterned mircostuctures of conducting polymers by soft lithography, and application in microelectronic device fabrication. Adv. Mater. 11, 1038–1041 (1999)

    Article  Google Scholar 

  4. N.R. Bieri, J. Chung, S.E. Haferl, D. Poulikakos, C.P. Grigoropoulos, Microstructuring by printing and laser curing of nanoparticle solutions. Appl. Phys. Lett. 82, 3529–3531 (2003)

    Article  ADS  Google Scholar 

  5. M. Aminuzzaman, A. Watanabe, T. Miyashita, Direct writing of conductive silver micropatterns on flexible polyimide film by laser-induced pyrolysis of silver nanoparticle-dispersed film. J. Nanopart Res. 12, 931–938 (2010)

    Article  Google Scholar 

  6. J. Chung, N.R. Bieri, S. Ko, C.P. Grigoropoulos, D. Poulikakos, In-tandem deposition and sintering of printed gold nanoparticle inks induced by continuous Gaussian laser irradiation. Appl. Phys. A 79, 1259–1261 (2004)

    ADS  Google Scholar 

  7. N.R. Bieri, J. Chung, D. Poulikakos, C.P. Grigoropoulos, Manufacturing of nanoscale thickness gold lines by laser curing of a discretely deposited nanoparticle suspension. Superlattices Microstruct. 35, 437–444 (2004)

    Article  ADS  Google Scholar 

  8. N.R. Bieri, J. Chung, D. Poulikakos, C.P. Grigoropoulos, An experimental investigation of microresistor laser printing with gold nanoparticle-laden inks. Appl. Phys. A 80, 1485–1495 (2005)

    Article  ADS  Google Scholar 

  9. M. Zenou, O. Ermak, A. Saar, Z. Kotler, Laser sintering of copper nanoparticles. J. Phys. D Appl. Phys. 47, 025501–025512 (2014)

    Article  ADS  Google Scholar 

  10. J. Chung, S. Ko, N.R. Bieri, C.P. Grigoropoulos, D. Poulikakos, Appl. Phys. Lett. 84, 801–803 (2004)

    Article  ADS  Google Scholar 

  11. B. Kang, S. Ko, J. Kim, M. Yang, Microelectrode fabrication by laser direct curing of tiny nanoparticle self-generated from organometallic ink. Opt. Express 19, 2573–2579 (2011)

    Article  ADS  Google Scholar 

  12. Z. Cai, X. Zeng, J. Liu, Laser direct writing of conductive silver film on polyimide surface from decomposition of organometallic ink. J. Electron. Mater. 40, 301–305 (2011)

    Article  ADS  Google Scholar 

  13. B. Kang, S. Han, J. Kim, S. Ko, M. Yang, One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle. J. Phys. Chem. C 115, 23664–23670 (2011)

    Article  Google Scholar 

  14. J. Ryu, H.S. Kim, H.T. Hahn, Reactive sintering of copper nanoparticles using intense pulsed light for printed electronics. J. Electron. Mater. 40, 42–50 (2010)

    Article  ADS  Google Scholar 

  15. Y. Borodko, S.E. Habas, M. Koebel, P. Yang, H. Frei, G.A. Somorjai, Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR. J. Phys. Chem. B 110, 23052–23059 (2006)

    Article  Google Scholar 

  16. T. Vijaykumar, G.U. Kulkarni, Electrostatic nanolithography on PVP films for patterning metal nanocrystals and fullerenes. Nanotechnology 18, 445303 (2007)

    Article  ADS  Google Scholar 

  17. A. Pyatenko, H. Wang, N. Koshizaki, T. Tsuji, Mechanism of pulse laser interaction with colloidal nanoparticles. Laser Photonics Rev. 7, 596–604 (2013)

    Article  Google Scholar 

  18. K. Maekawa, K. Yamasaki, T. Niizeki, M. Mita, Y. Matsuba, N. Terada, H. Saito, Drop-on-demand laser sintering with silver nanoparticles for electronics packaging. IEEE Trans. Compon. Packag. Manuf. Technol. 2, 868–877 (2012)

    Article  Google Scholar 

  19. E.C. Kinzel, H.H. Sigmarsson, X. Xu, W.J. Chappell, Laser sintering of thick-film conductors for microelectronic applications. J. Appl. Phys. 101, 063106 (2007)

    Article  ADS  Google Scholar 

  20. S. Jeong, K. Woo, D. Kim, S. Lim, J.S. Kim, H. Shin, Y. Xia, J. Moon, Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing. Adv. Funct. Mater. 18, 679–686 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the Research Foundation of Korea (NRF) and was funded by the Ministry of Science, ICT and Future Planning, (Grant No. 2012-010307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minyang Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Yang, M. Effect of solvent and PVP on electrode conductivity in laser-induced reduction process. Appl. Phys. A 119, 317–323 (2015). https://doi.org/10.1007/s00339-014-8970-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8970-6

Keywords

Navigation