Skip to main content
Log in

Packing densification of binary mixtures of spheres and cubes subjected to 3D mechanical vibrations

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Packing densification of binary mixtures of spheres and cubes, which are large cubes/small spheres and large spheres/small cubes packing systems, under 3D vibrations was studied physically. The influences of vibration conditions such as vibration time, frequency, amplitude, vibration intensity, volume fraction of large particles, and container size on the packing densification were systematically analyzed, and the optimal processing parameters were identified. And the proposed analytical model was validated as well. The results show that the influences of each operating parameter on the packing densification of different binary mixtures have similar trends; however, the maximum packing densities and corresponding optimal parameters are different. The good agreement between physical and analytical results proves the effectiveness of the proposed analytical model. The results provide meaningful information and references for the random dense packings of binary mixtures of cubes and spheres both in industry and in scientific research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. R.M. German, Particle Packing Characteristics, 2nd edn. (Metal Powder Industries Federation, Princeton, 1989)

    Google Scholar 

  2. D. Bideau, A. Hansen, Disorder and Granular Media (Random Materials and Processes Series, Elsevier, Amsterdam, 1993)

    Google Scholar 

  3. J.D. Bernal, Nature 183, 14 (1959)

    Google Scholar 

  4. G.D. Scott, Nature 188, 908 (1960)

    Article  ADS  MATH  Google Scholar 

  5. J.D. Bernal, J. Mason, Nature 188, 910 (1960)

    Article  ADS  Google Scholar 

  6. J.L. Finney, Proc. R. Soc. Lond. A 319, 479 (1970)

    Article  ADS  Google Scholar 

  7. R. Rutgers, Chem. Technol. 19, 17 (1963)

    Google Scholar 

  8. J.E. Ayer, F.E. Soppet, J. Am. Ceram. Soc. 48, 180 (1965)

    Article  Google Scholar 

  9. G.D. Scott, D.M. Kilgour, Br. J. Appl. Phys. (J. Phys. D) 2, 863 (1969)

  10. K. Kawakita, K.H. Ludde, Powder Technol. 4, 61 (1970)

    Article  Google Scholar 

  11. L.V. Woodcock, J. Chem. Soc. Farady Trans. II 72, 1667 (1976)

    Article  Google Scholar 

  12. J.G. Berryman, Phys. Rev. A 1983(27), 1053 (1983)

    Article  ADS  Google Scholar 

  13. W.S. Jodrey, E.M. Tory, Phys. Rev. A 32, 2347 (1985)

    Article  ADS  Google Scholar 

  14. G.T. Nolan, P.E. Kavanagh, Powder Technol. 72, 149 (1992)

    Article  Google Scholar 

  15. J.B. Knight, C.G. Fandrich, C.N. Lau, H.M. Jaeger, S.R. Nagel, Phys. Rev. E 51, 3957 (1995)

    Article  ADS  Google Scholar 

  16. E.R. Nowak, J.B. Knight, M.L. Povinelli, H.M. Jaeger, S.R. Nagel, Powder Technol. 94, 79 (1997)

    Article  Google Scholar 

  17. P. Philippe, D. Bideau, Phys. Rev. E 63, 051304 (2001)

    Article  ADS  Google Scholar 

  18. P. Philippe, D. Bideau, Europhys. Lett. 60, 677 (2002)

    Article  ADS  Google Scholar 

  19. D.A. Weitz, Science 303, 968 (2004)

    Article  Google Scholar 

  20. X.Z. An, R.Y. Yang, K.J. Dong, R.P. Zou, A.B. Yu, Phys. Rev. Lett. 95, 205502 (2005)

    Article  ADS  Google Scholar 

  21. X.Z. An, C.X. Li, R.Y. Yang, R.P. Zou, A.B. Yu, Powder Technol. 196, 50 (2009)

    Article  Google Scholar 

  22. T.G. Owe Berg, R.L. McDonald, R.J. Trainor, Powder Technol. 3, 183 (1969/1970)

  23. D.L. Blair, N.W. Mueggenburg, A.H. Marshall, H.M. Jaeger, S.R. Nagel, Phys. Rev. E 63, 041304 (2001)

    Article  ADS  Google Scholar 

  24. Y. Nahmad-Molinari, J.C. Ruiz-Suarez, Phys. Rev. Lett. 89, 264302 (2002)

    Article  ADS  Google Scholar 

  25. N.W. Mueggenburg, H.M. Jaeger, S.R. Nagel, Phys. Rev. E 66, 031304 (2002)

    Article  ADS  Google Scholar 

  26. A.R. Kansal, S. Torquato, F.H. Stillinger, Phys. Rev. E 66, 041109 (2002)

    Article  ADS  Google Scholar 

  27. M.J. Spannuth, N.W. Mueggenburg, H.M. Jaeger, S.R. Nagel, Granular Matter 6, 215 (2004)

    Google Scholar 

  28. A.B. Yu, X.Z. An, R.P. Zou, R.Y. Yang, K. Kendall, Phys. Rev. Lett. 97, 265501 (2006)

    Article  ADS  Google Scholar 

  29. C.X. Li, X.Z. An, R.Y. Yang, R.P. Zou, A.B. Yu, Powder Technol. 208, 617 (2011)

    Article  Google Scholar 

  30. X.Z. An, R.Y. Yang, K.J. Dong, A.B. Yu, Comput. Phys. Commun. 182, 1989 (2011)

    Article  ADS  Google Scholar 

  31. X.Z. An, F. Huang, Powders and grains 2013. AIP Conf. Proc. 1542, 413 (2013)

    Article  ADS  Google Scholar 

  32. X.Z. An, A.B. Yu, Powder Technol. 248, 121 (2013)

    Article  Google Scholar 

  33. G.G. Szpiro, Kepler’s Conjecture: How Some of the Greatest Minds in History Helped Solve One of the Oldest Math Problems in the World (Wiley, New York, 2003)

    Google Scholar 

  34. T.C. Hales, Ann. Math. 162, 1065 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. R.K. McGeary, J. Am. Ceram. Soc. 1961(44), 513 (1961)

    Article  Google Scholar 

  36. S. Yerazunis, S.W. Cornell, B. Wintner, Nature 1965(207), 835 (1965)

    Article  ADS  Google Scholar 

  37. G.L. Messing, G.Y. Onoda Jr, J. Am. Ceram. Soc. 1978(61), 1 (1978)

    Article  Google Scholar 

  38. T. Stovall, F. Delarrard, M. Buil, Powder Technol. 48, 1 (1986)

    Article  Google Scholar 

  39. J.M. Zheng, W.B. Carlson, J.S. Reed, J. Eur. Ceramic Soc. 15, 479 (1995)

    Article  Google Scholar 

  40. S.M.K. Rassouly, Powder Technol. 103, 145 (1999)

    Article  Google Scholar 

  41. R.P. Zou, C.L. Feng, A.B. Yu, J. Am. Ceram. Soc. 84, 504 (2001)

    Article  Google Scholar 

  42. X. An, C. Li, “3D vibrated packing densification of binary sphere mixtures”, (unpublished, 2014)

  43. A.R. Dexter, D.W. Tanner, Nature Phys. Sci. 1971(230), 177 (1971)

    Article  ADS  Google Scholar 

  44. A.B. Yu, N. Standish, Powder Technol. 49, 249 (1987)

    Article  Google Scholar 

  45. M. Suzuki, T. Oshima, Powder Technol. 43, 147 (1985)

    Article  Google Scholar 

  46. R.P. Zou, M.L. Gan, A.B. Yu, Chem. Eng. Sci. 66, 4711 (2011)

    Article  Google Scholar 

  47. N. Ouchiyama, T. Tanaka, Ind. Eng. Chem. Fundam. 20, 66 (1981)

    Article  Google Scholar 

  48. M. Suzuki, T. Shima, Powder Technol. 1985(44), 213 (1985)

    Article  Google Scholar 

  49. A.B. Yu, N. Standish, Powder Technol. 52, 233 (1987)

    Article  Google Scholar 

  50. S. Torquato, Y. Jiao, Nature 460, 876 (2009)

    Article  ADS  Google Scholar 

  51. A. Haji-Akbari, M. Engel, A.S. Keys, X.Y. Zheng, R.G. Petschek, P. Palffy-Muhoray, S.C. Glotzer, Nature 462, 773 (2009)

    Article  ADS  Google Scholar 

  52. S.X. Li, P. Lu, W.W. Jin, L.Y. Meng, Soft Matter 9, 9298 (2013)

    Article  ADS  Google Scholar 

  53. S. Torquato, Y. Jiao, Phys. Rev. E 80, 041104 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  54. A. Jaoshvili, A. Esakia, M. Porrati, P.M. Chaikin, Phys. Rev. Lett. 104, 185501 (2010)

    Article  ADS  Google Scholar 

  55. Z.Y. Zhou, R.P. Zou, D. Pinson, A.B. Yu, Ind. Eng. Chem. Res. 50, 9787 (2011)

    Article  Google Scholar 

  56. A. Donev, I. Cisse, D. Sachs, E.A. Variano, F.H. Stillinger, R. Connelly, S. Torquato, P.M. Chaikin, Science 2004(303), 990 (2004)

    Article  ADS  Google Scholar 

  57. W.N. Man, A. Donev, F.H. Stillinger, M.T. Sullivan, W.B. Russel, D. Heeger, S. Inati, S. Torquato, P.M. Chaikin, Phys. Rev. Lett. 94, 198001 (2005)

    Article  ADS  Google Scholar 

  58. A. Wouterse, S.R. Williams, A. Philipse, J. Phys. Condens. Matter 19, 406215 (2007)

    Article  Google Scholar 

  59. S.R. Williams, A.P. Philipse, Phys. Rev. E 67, 051301 (2003)

    Article  ADS  Google Scholar 

  60. J. Zhao, S.X. Li, R.P. Zou, A.B. Yu, Soft Matter 2012(8), 1003 (2012)

    Article  ADS  Google Scholar 

  61. A. Baule, R. Mari, L. Bo, L. Portal, H.A. Makse, Nat. Commun. 4, 2194 (2013)

    Article  ADS  Google Scholar 

  62. F.Y. Fraige, P.A. Langston, G.Z. Chen, Powder Technol. 186, 224 (2008)

    Article  Google Scholar 

  63. J. Zhao, S.X. Li, Chin. Phys. Lett. 25, 4034 (2008)

    Article  ADS  Google Scholar 

  64. R.P. Zou, A.B. Yu, Powder Technol. 88, 71 (1996)

    Article  Google Scholar 

  65. W.L. Zhang, K.E. Thompson, A.H. Reed, L. Beenken, Chem. Eng. Sci. 61, 8060 (2006)

    Article  Google Scholar 

  66. S.X. Li, J. Zhao, P. Lu, Y. Xie, Chin. Sci. Bull. 55, 114 (2010)

    Article  MATH  Google Scholar 

  67. R.P. Zou, A.B. Yu, Chem. Eng. Sci. 51, 1177 (1996)

    Article  Google Scholar 

  68. Y. Jiao, F.H. Stillinger, S. Torquato, Phys. Rev. E 81, 041304 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  69. G.W. Delaney, P.W. Cleary, Europhys. Lett. 89, 34002 (2010)

    Article  ADS  Google Scholar 

  70. Y. Jiao, S. Torquato, Phys. Rev. E 84, 041309 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  71. X.Z. An, R.Y. Yang, R.P. Zou, A.B. Yu, Powder Technol. 188, 102 (2008)

    Article  Google Scholar 

  72. C.C. Furnas, The Relations Between Specific Volume, Voids and Size Composition in Systems of Broken Solids of Mixed Sizes (Serial 2894, Report of Investigations, U.S. Bureau of Mines, North Central Experiment Station, Minneapolis, MN, 1928)

    Google Scholar 

  73. A.E.R. Westman, J. Am. Ceram. Soc. 19, 127 (1936)

    Article  Google Scholar 

  74. R.F. Fedors, R.F. Landel, Powder Technol. 23, 225 (1979)

    Article  Google Scholar 

  75. A.B. Yu, N. Standish, Powder Technol. 52, 233 (1987)

    Article  Google Scholar 

  76. A.B. Yu, N. Standish, Ind. Eng. Chem. Res. 1991(30), 1372 (1991)

    Article  Google Scholar 

  77. A.B. Yu, N. Standish, A. Mclean, J. Am. Cream. Soc. 76, 2813 (1993)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the financial support of National Natural Science Foundation of China (No. 50974040) and China New Century Excellent Talent Funds (NCET-10-0300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Z. An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, X.Z., He, S.S., Feng, H.D. et al. Packing densification of binary mixtures of spheres and cubes subjected to 3D mechanical vibrations. Appl. Phys. A 118, 151–162 (2015). https://doi.org/10.1007/s00339-014-8835-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8835-z

Keywords

Navigation