Skip to main content
Log in

Enhanced sensing performance of nitrogen dioxide sensor based on organic field-effect transistor with mechanically rubbed pentacene active layer

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Organic field-effect transistor (OFET)-based nitrogen dioxide (NO2) sensors with mechanically rubbed pentacene active layer were fabricated by utilizing polystyrene as the dielectric. Compared with those of the reference device, the sensing properties, including sensitivity and response time, were significantly enhanced in OFETs with the pentacene film rubbed parallel to the source/drain electrodes, while the device with pentacene film rubbed perpendicular to the source/drain electrodes showed sensing properties lower than those of the reference device. Atomic force microscope was used to analyze the morphologies of pentacene film with or without rubbing, and much smaller grains of pentacene were observed after mechanical rubbing. Consequently, more grain boundaries which were beneficial to the diffusion of analytes were formed, and NO2 diffused to the channel of OFET with parallel rubbed pentacene would modify the hole density more effectively as the charge flow in such device was forced to travel through the rubbed pentacene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Namiesnik, B. Zabiegala, A. Kot-Wasik, M. Partyka, A. Wasik, Passive sampling and/or extraction techniques in environmental analysis: A review. Anal. Bioanal. Chem. 381, 279 (2005)

    Article  Google Scholar 

  2. A. Kolmakov, M. Moskovits, Chemical sensing and catalysis by one-dimensional metal-oxide nanostructure. Annu. Rev. Mater. Res. 34, 151 (2004)

    Article  ADS  Google Scholar 

  3. A.M. Andringa, C. Piliego, I. Katsouras, P.W.M. Blom, D.M. Leeuw, NO2 detection and real-time sensing with field-effect transistor. Chem. Mater. 26, 773 (2013)

    Article  Google Scholar 

  4. www.epa.gov/air/toxicair/newtoxics.html Accessed 26 Jun 2014

  5. P. Lin, F. Yan, Organic thin-film transistors for chemical and biological sensing. Adv. Mater. 24, 34 (2012)

    Article  ADS  Google Scholar 

  6. Y. Guo, G. Yu, Y. Liu, Functional organic field-effect transistors. Adv. Mater. 22, 4427 (2010)

    Article  Google Scholar 

  7. L. Torsi, M.C. Tanese, N. Cioffi, M.C. Gallazzi, L. Sabbatini, P.G. Zambonin, Alkoxy substituted polyterthiophene thin-film-transistors as alcohol sensors. Sens. Actuators B 98, 204 (2004)

    Article  Google Scholar 

  8. L. Torsi, M.C. Tanese, N. Cioffi, M.C. Gallazzi, L. Sabbatini, P.G. Zambonin, G. Raos, S.V. Meille, M.M. Giangregorio, Side-chain role in chemically sensing conducting polymer field-effect transistors. J. Phys. Chem. B 107, 7589 (2003)

    Article  Google Scholar 

  9. J. Yu, X. Yu, L. Zhang, H. Zeng, Ammonia gas sensor based on pentacene organic field-effect transistor. Sens. Actuators B 173, 133 (2012)

    Article  Google Scholar 

  10. B. Grone, A. Dodabalapur, A. Gelperin, L. Torsi, H.E. Katz, A.J. Lovinger, Z. Bao, Electronic sensing of vapors with organic transistors. Appl. Phys. Lett. 78, 2229 (2001)

    Article  ADS  Google Scholar 

  11. J. Huang, J. Miragliotta, A. Becknell, H.E. Katz, Hydroxyterminated organic semiconductor-based field-effect transistors for phosphonate vapor detection. J. Am. Chem. Soc. 129, 9366 (2007)

    Article  Google Scholar 

  12. A. Klug, M. Denk, T. Bauer, M. Sandholzer, U. Scherf, C. Slugovc, E.J.W. List, Organic field-effect transistor based sensors with sensitive gate dielectrics used for low-concentration ammonia detection. Org. Electron. 14, 500 (2013)

    Article  Google Scholar 

  13. T. Zhang, M.B. Nix, B.Y. Yoo, M.A. Deshusses, N.V. Myung, Electrochemically functionalized single-walled carbon nanotube gas sensor. Electroanalysis 18, 1153 (2006)

    Article  Google Scholar 

  14. T. Shaymurat, Q. Tang, Y. Tong, L. Dong, Y. Liu, Gas dielectric transistor of CuPc single crystalline nanowire for SO2 detection down to sub-ppm levels at room temperature. Adv. Mater. 25, 2269 (2013)

    Article  Google Scholar 

  15. X.L. Chen, A.J. Lovinger, Z. Bao, J. Sapjeta, Morphological and transistor studies of organic molecular semiconductors with anisotropic electrical characteristics. Chem. Mater. 13, 1341 (2001)

    Article  Google Scholar 

  16. M. Bouvet, G. Guillaud, A. Leroy, A. Maillard, S. Spirkovitch, F.-G. Tournilhac, Phthalocyanine-based field-effect transistor as ozone sensor. Sens. Actuators B 73, 63 (2001)

    Article  Google Scholar 

  17. W. Huang, J. Sinha, M.-L. Yeh, J.F.M. Hardigree, R. LeCover, K. Besar, A.M. Rule, P.N. Breysse, H.E. Katz, Diverse organic field-effect transistor sensor responses from two functionalized naphthalenetetracarboxylic diimides and copper phthalocyanine semiconductors distinguishable over a wide analyte range. Adv. Funct. Mater. 23, 4094 (2013)

    Article  Google Scholar 

  18. W. Hu, Y. Liu, Y. Xu, S. Liu, S. Zhou, D. Zhu, B. Xu, C. Bai, C. Wang, The gas sensitivity of a metal-insulator-semiconductor field-effect transistor based on Langmuir-Blodgett films of a new asymmetrically substituted phthalocyanine. Thin Solid Films 360, 256 (2000)

    Article  ADS  Google Scholar 

  19. H. Sirringhaus, R.J. Wilson, R.H. Friend, M. Inbasekaran, W. Wu, E.P. Woo, M. Grell, D.D.C. Bradley, Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase. Appl. Phys. Lett. 77, 406 (2000)

    Article  ADS  Google Scholar 

  20. H. Heil, T. Finnberg, N. von Malm, R. Schmechel, H. von Seggern, The influence of mechanical rubbing on the field-effect mobility in polyhexylthiophene. J. Appl. Phys. 93, 1636 (2003)

    Article  ADS  Google Scholar 

  21. H.R. Tseng, L. Ying, B.B.Y. Hsu, L.A. Perez, C.J. Takacs, G.C. Bazan, A.J. Heeger, High mobility field effect transistors based on macroscopically oriented regioregular copolymers. Nano Lett. 12, 6353 (2012)

    Article  ADS  Google Scholar 

  22. S. Ji, H. Wang, T. Wang, D. Yan, A high-performance room-temperature NO2 sensor based on an ultrathin heterojunction film. Adv. Mater. 25, 1755 (2013)

    Article  Google Scholar 

  23. R.D. McCullough, S. Tristram-Nagle, S.P. Williams, R.D. Lowe, M. Jayaraman, Self-oriented poly (3-Alkylthiophenes): New insights on structure-property relationships in conducting polymers. J. Am. Chem. Soc. 115, 4910 (1993)

    Article  Google Scholar 

  24. H. Sirringhaus, P.J. Brown, R.H. Friend, M.M. Nielsen, K. Bechgaard, B.M.W. Langeveld-Voss, A.J.H. Spiering, R.A.J. Janssen, E.W. Meijer, P. Herwig, Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685 (1999)

    Article  ADS  Google Scholar 

  25. J.T. Mabeck, G.G. Malliaras, Chemical and biological sensors based on organic thin-film transistors. Anal. Bioanal. Chem. 384, 343 (2006)

    Article  Google Scholar 

  26. H.E. Katz, Chemically sensitive field-effect transistors and chemiresistors: New materials and device structures. Electroanalysis 16, 1837 (2004)

    Article  Google Scholar 

  27. P.S. Barker, M.C. Petty, A.P. Monkman, J. McMurdo, M.J. Cook, R. Pride, A hybrid phthalocyanine/silicon field-effect transistor sensor for NO2. Thin Solid Films 284, 94 (1996)

    Article  ADS  Google Scholar 

  28. W. Huang, J. Yu, X. Yu, W. Shi, Polymer dielectric layer functionality in organic field-effect transistor based ammonia gas sensor. Org. Electron. 14, 3453 (2013)

    Article  Google Scholar 

  29. D. Duarte, A. Dodabalapur, Investigation of the physics of sensing in organic field effect transistor based sensors. J. Appl. Phys. 111, 044509 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Science Foundation of China (NSFC) (Grant No. 61177032), the Foundation for Innovation Research Groups of the NSFC (Grant No. 61421002), and the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2010Z004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junsheng Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Huang, W., Shi, W. et al. Enhanced sensing performance of nitrogen dioxide sensor based on organic field-effect transistor with mechanically rubbed pentacene active layer. Appl. Phys. A 118, 1279–1285 (2015). https://doi.org/10.1007/s00339-014-8831-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8831-3

Keywords

Navigation