Skip to main content
Log in

Influence of the anisotropy on the performance of D-band SiC IMPATT diodes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Numerical simulation has been made to predict the RF performance of <0001> direction and <\( 11\bar{2}0 \)> direction p+/n/n/n+ (single drift region) 4H silicon carbide (4H-SiC) impact-ionization-avalanche-transit-time (IMPATT) diodes for operation at D-band frequencies. We observed that the output performance of 4H-SiC IMPATT diode is sensitive to the crystal direction of the one-dimensional current flow. The simulation results show that <0001> direction 4H-SiC IMPATT diode provides larger breakdown voltage for its lower electron and hole ionization rates and higher dc-to-rf conversion efficiency (η) for its higher ratio of drift zone voltage drop (VD) to breakdown voltage (VB) compared with those for <\( 11\bar{2}0 \)> direction 4H-SiC IMPATT diode, which lead to higher-millimeter-wave power output for <0001> direction 4H-SiC IMPATT compared to <\( 11\bar{2}0 \)> direction. However, the quality factor Q for the <\( 11\bar{2}0 \)> direction 4H-SiC IMPATT diode is lower than that of <0001> direction, which implies that the <\( 11\bar{2}0 \)> direction 4H-SiC IMPATT diode exhibits better stability and higher growth rate of microwave oscillation compared with <0001> direction 4H-SiC IMPATT diode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Luo, J.A. Cooper Jr, M.R. Melloch, K.J. Webb, IEEE Electron Device Lett. 22(6), 266–268 (2001)

    Article  ADS  Google Scholar 

  2. Y. Luo, M. R. Melloch, J. A. Cooper Jr., K. J. Webb, Proc. IEEE, p. 158–167 (2000)

  3. P.R. Tripathy, M. Mukherjee, S.P. Pati, Int. J. Microw. Wirel. Technol. 4(04), 473–481 (2012)

    Article  Google Scholar 

  4. G. N. Dash, J. Pradhan, S. K. Swain, S. R. Pattanaik, EDSSC, Proc. IEEE, p. 1–2 (2013)

  5. A. Acharyya, J.P. Banerjee, IETE J. Res. 59, 118 (2013)

    Article  Google Scholar 

  6. M. Mukherjee, N. Mazumder, S.K. Roy, IEEE Trans. Device Mater. Reliab. 8(3), 608–620 (2008)

    Article  Google Scholar 

  7. D. Ghosh, B. Chakrabarti, M. Mitra, Int. J. Sci. Eng. Res. 3(2), 1–6 (2012)

  8. R.J. Trew, J.B. Yan, R.K. Mock, Proc. IEEE 79, 98–620 (1991)

    Article  Google Scholar 

  9. A.K. Panda, R.K. Parida, N.C. Agrawala, G.N. Dash, IET Microw. Antennas Propag. 2(8), 789–793 (2008)

    Article  Google Scholar 

  10. W.C. Ke, S.J. Lee, S.L. Chen, C.Y. Kao, W.C. Houng, Mater. Chem. Phys. 133(2), 1029–1033 (2012)

    Article  Google Scholar 

  11. A. Acharyya, J. P. Banerjee, Appl. Nanosci. 4(1), 1–14 (2012)

  12. C.H. Carter Jr, V.F. Tsvetkov, R.C. Glass, D. Henshall, M. Brady, S.G. Muller, O. Kordina, K. Irvine, J.A. Edmond, H.S. Kong, R. Singh, S.T. Allen, J.W. Palmour, Mater. Sci. Eng., B 61, 1–8 (1999)

    Article  Google Scholar 

  13. K. Vassilevski, K. Zekentes, G. Konstantinidis, N. Papanicolaou, I.P. Nikitina, A.I. Babanin, Mater. Sci. Forum 338, 1017–1020 (2000)

    Article  Google Scholar 

  14. Y. Luo, M. R. Melloch, J. A. Cooper Jr., K. J. Webb, Device Res. Conference, 2001. IEEE, p. 207–208 (2001)

  15. K.V. Vassilevski, A.V. Zorenko, K. Zekentes, Electron. Lett. 37(7), 466–467 (2001)

    Article  Google Scholar 

  16. M. Arai, S. Ono, C. Kimura, Electron. Lett. 40(16), 1026–1027 (2004)

    Article  Google Scholar 

  17. S.R. Pattanaik, J. Pradhan, S.K. Swain, P. Panda, G.N. Dash, Proc. of SPIE 8549, 85490B-1 (2012)

    Article  ADS  Google Scholar 

  18. T. Hatakeyama, T. Watanabe, T. Shinohe, Appl. Phys. Lett. 85(8), 1380–1382 (2004)

    Article  ADS  Google Scholar 

  19. K. Bertilsson, H. E. Nilsson, C. S. Petersson, Computers in Power Electron., 2000. COMPEL 2000. The 7th Workshop on. IEEE, p. 118–120 (2000)

  20. C. Dalle, P.A. Rolland, Int. J. Numer. Model. Electron. Networks Devices Fields 2, 61–73 (1989)

    Article  Google Scholar 

  21. C. Dalle, S. Beaussart, M.R. Friscourt, Electron Device Lett. IEEE 19(7), 262–264 (1998)

    Article  ADS  Google Scholar 

  22. A.E. Moussati, C. Dalle, J. Comput. Electron. 5(2–3), 235–240 (2006)

    Article  Google Scholar 

  23. C. Dalle, P.A. Rolland, IEEE Trans. Microw. Theory Tech. 38(4), 366–372 (1990)

    Article  ADS  Google Scholar 

  24. C.C. Chen, R.K. Mains, G.I. Haddad, IEEE Trans. Electron Devices 38(8), 1701–1705 (1991)

    Article  ADS  Google Scholar 

  25. P. Bauhahn, G.I. Haddad, IEEE Trans. Electron Devices 24(6), 634–642 (1977)

    Article  ADS  Google Scholar 

  26. S. Banerjee, M. Mukherjee, J.P. Banerjee, Int. J. Adv. Sci. Technol. 16, 11–19 (2010)

    MathSciNet  Google Scholar 

  27. I. Mehdi, G.I. Haddad, R.K. Mains, J. Appl. Phys. 64(3), 1533–1540 (1988)

    Article  ADS  Google Scholar 

  28. S. K. Lee, Doctoral dissertation, KTH, (2002)

  29. A.G. Chynoweth, Phys. Rev. 109(5), 1537 (1958)

    Article  ADS  Google Scholar 

  30. M. Bakowski, U. Gustafsson, U. Lindefelt, Phys. Status. Solidi A162, 421 (1997)

    Article  ADS  Google Scholar 

  31. W.J. Schaffer, H.S. Kong, G.H. Negley, J.W. Palmour, Inst. Phys. Conf. Ser. 137, 155 (1994)

    Google Scholar 

  32. W.J. Schaffer, G.H. Negley, K.G. Irvine, J.W. Palmour, Mat. Res. Soc. Symp. Proc. 339, 595 (1994)

    Article  Google Scholar 

  33. D.L. Scharfetter, H.K. Gummel, IEEE Trans. Electron Devices 16(1), 64–77 (1969)

    Article  Google Scholar 

  34. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, London, 2006)

    Book  Google Scholar 

  35. J.P. Banerjee, S.P. Pati, S.K. Roy, Appl. Phys. A 48(5), 437–443 (1989)

    Article  ADS  Google Scholar 

  36. S.P. Pati, R. Mukherjee, J.P. Banerjee, S.K. Roy, Appl. Phys. A 56, 375–380 (1993)

    Article  ADS  Google Scholar 

  37. S. Banerjee, J.P. Banerjee, Int J Eng Sci Technol 2(7), 2790–2801 (2010)

    Google Scholar 

  38. H. Eisele and G. I. Haddad, in Modern Semiconductor Device Physics, ed. by S. M. Sze (Wiley, New York 1998)

  39. J.H. Zhao, V. Gruzinskis, Y. Luo, M. Weiner, M. Pan, P. Shiktorov, E. Starikov, Semicond. Sci. Technol. 15, 1093–1100 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 61274092), and the State Key Program of National Natural Science Foundation of China (Grant No. 61334002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin’an Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Yang, L., Wang, S. et al. Influence of the anisotropy on the performance of D-band SiC IMPATT diodes. Appl. Phys. A 118, 1219–1227 (2015). https://doi.org/10.1007/s00339-014-8818-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8818-0

Keywords

Navigation