Skip to main content
Log in

Crystallization kinetics and growth mechanism of Pb(Zr0.52·Ti0.48)O3 nanopowders

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, Pb(Zr0.52·Ti0.48)O3 nanopowders were synthesized via sol–gel process. Particle morphology, crystalline phases and thermal behavior were characterized by scanning electron microscopy, X-ray diffraction and simultaneous thermal analyzer, respectively. The X-ray diffraction pattern showed perovskite phase clearly. The non-isothermal activation energy for the perovskite crystallization in Pb(Zr0.52·Ti0.48)O3 gel powders was 224.91 kJ mol−1. Both growth morphology parameter (n) and crystallization mechanism index (m) are close to 3.0, indicating that the bulk nucleation is dominant in the perovskite PZT formation. To determine dielectric properties, the calcined Pb(Zr0.52·Ti0.48)O3 nanopowders were pressed using uniaxial press. It was found that the Pb(Zr0.52·Ti0.48)O3 disks, by sintering at 1,200 °C for 2 and 10 h, and at 1 kHz frequency, had 966 and 1,490 of the dielectric constant, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.F. Tressler, S. Alkoy, R.E. Newnham, J. Electroceram. 2, 257 (1998)

    Article  Google Scholar 

  2. A.J. Moulson, J.M. Herbert, Electroceramics: materials, properties, applications (Wiley, New York, 2003)

    Book  Google Scholar 

  3. M. Soares, A. Senos, P. Mantas, J. Eur. Ceram. Soc. 20, 321 (2000)

    Article  Google Scholar 

  4. V. Palkar, M. Multani, Mater. Res. Bull. 14, 1353 (1979)

    Article  Google Scholar 

  5. J. Fukushima, K. Kodaira, T. Matsushita, J. Mater. Sci. 19, 595 (1984)

    Article  ADS  Google Scholar 

  6. S.Y. Chen, I.W. Chen, J. Am. Ceram. Soc. 81, 97 (1998)

    Article  Google Scholar 

  7. C.A. Randall, N. Kim, J.P. Kucera, W. Cao, T.R. Shrout, J. Am. Ceram. Soc. 81, 677 (1998)

    Article  Google Scholar 

  8. K.R. Mohana Rao, A. Rao, S. Komarneni, Mater. Lett. 28, 463 (1996)

    Article  Google Scholar 

  9. L. Kong, W. Zhu, O. Tan, Mater. Lett. 42, 232 (2000)

    Article  Google Scholar 

  10. T. Kutty, R. Balachandran, Mater. Res. Bull. 19, 1479 (1984)

    Article  Google Scholar 

  11. T. Yamamoto, Am. Ceram. Soc. Bull. 71, 978 (1992)

    Google Scholar 

  12. N. Chakrabarti, H. Maiti, Mater. Lett. 30, 169 (1997)

    Article  Google Scholar 

  13. A. Monshi, M.R. Foroughi, M.R. Monshi, World. J. NanoSci. Eng. 2, 154 (2012)

    Article  Google Scholar 

  14. K. Matusita, T. Komatsu, R. Yokota, J. Mater. Sci. 19, 291 (1984)

    Article  ADS  Google Scholar 

  15. J. MacDowell, G. Beall, J. Am. Ceram. Soc. 52, 17 (1969)

    Article  Google Scholar 

  16. J.H. Simmons, Uhlmann, G.H. Beall, Nucleation and crystallization in glasses (American Ceramic Society, USA, 1981)

    Google Scholar 

  17. A. Wu, I.M.M. Salvado, P.M. Vilarinho, J.L. Baptista, J. Am. Ceram. Soc. 81, 2640 (1998)

    Article  Google Scholar 

  18. G. Yi, Z. Wu, M. Sayer, J. Appl. Phys. 64, 2717 (1988)

    Article  ADS  Google Scholar 

  19. R. Meyer, T. Shrout, S. Yoshikawa, J. Am. Ceram. Soc. 81, 861 (1998)

    Article  Google Scholar 

  20. M. Khajelakzay, E. Taheri-Nassaj, Mater. Lett. 75, 61 (2012)

    Article  Google Scholar 

  21. M. Khajelakzay, E. Taheri-Nassaj, Electron. Mater. Lett. 10, 4 (2013)

    Google Scholar 

  22. B.D. Cullity, Am. J. Phys. 25, 394 (1957)

    Article  ADS  Google Scholar 

  23. M. Khajelakzay, E. Taheri-Nassaj, in Proceeding of the 3rd International Conference on Ultrafine Grained and Nanostructured Materials (Tehran, 2011)

  24. J. S. A. Y. Wang, Carbon and PZT Nanofibers through Electrospinning (USA, 2011)

  25. S.Y. Chen, I.W. Chen, J. Am. Ceram. Soc. 77, 2337 (1994)

    Article  Google Scholar 

  26. A. Marotta, A. Buri, Thermochim. Acta 25, 155 (1978)

    Article  Google Scholar 

  27. O. Babushkin, T. Lindbäck, K. Brooks, N. Setter, J. Eur. Ceram. Soc. 17, 813 (1997)

    Article  Google Scholar 

  28. P. Durán, J. Tartaj, J.F. Fernández, M. Villegas, C. Moure, Ceram. Int. 25, 125 (1999)

    Article  Google Scholar 

  29. Y.-F. Chen, M.-C. Wang, M.-H. Hon, J. Eur. Ceram. Soc. 24, 2389 (2004)

    Article  Google Scholar 

  30. T. Furukawa, J. Fujino, E. Fukada, Jpn. J. Appl. Phys. 15, 2119 (1976)

    Article  ADS  Google Scholar 

  31. Z. Li, H. Gong, Y. Zhang, Curr. Appl. Phys. 9, 588 (2009)

    Article  ADS  Google Scholar 

  32. A. Chaipanich, N. Jaitanong, R. Yimnirun, Ferroelectr. Lett. 36, 59 (2009)

    Article  Google Scholar 

  33. Q. Zhao, D. Su, M. Cao, G. He, J. Di, J. Yuan, D. Wang, J. Mater. Sci. Mater. El 24, 3521 (2013)

    Article  Google Scholar 

  34. G.S. Wang, D. Rémiens, E. Dogheche, R. Herdier, X.L. Dong, J. Am. Ceram. Soc. 89, 3417 (2006)

    Article  Google Scholar 

  35. D.W. Henderson, J. Therm. Anal. Calorim. 15, 325 (1979)

    Article  Google Scholar 

  36. C.-S. Hsi, M.-C. Wang, J. Mater. Res. 13, 2655 (1998)

    Article  ADS  Google Scholar 

  37. G. He, G. Chen, Z. Bian, Intermetallics 8, 481 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Khajelakzay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khajelakzay, M., Taheri-Nassaj, E. Crystallization kinetics and growth mechanism of Pb(Zr0.52·Ti0.48)O3 nanopowders. Appl. Phys. A 116, 179–183 (2014). https://doi.org/10.1007/s00339-014-8406-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8406-3

Keywords

Navigation