Skip to main content
Log in

Growth of Fe-doped ZnO nanorods using aerosol-assisted chemical vapour deposition via in situ doping

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In situ Fe doping of ZnO nanorods (NRs) was performed using aerosol assisted chemical vapour deposition (AA-CVD) technique. As the aerosol generator is located outside the reactor, AA-CVD provides the flexibility to control doping parameters, such as doping timing, doping duration and a wider choice of dopant precursors. The Fe dopant aerosol was flowed into the reactor during the growth of ZnO NRs to achieve in situ doping. The X-ray diffraction analysis indicates that the Fe dopants were introduced into the ZnO lattice and present mainly in the form of Fe2+. This result is supported by the X-ray photoelectron spectroscopy analysis as the doublet separation is 13.6 eV, although there is a shift of Fe1/2 and Fe3/2 peaks to a lower binding energy levels. A strong green emission of PL of Fe-doped ZnO NRs shows that the NRs have poor crystal quality attributed to the Fe-induced defects (recombination centres). The poor photocatalytic performance in degrading Rhodamine B solution of Fe-doped ZnO NRs further proves that the Fe-induced defects were recombination centres rather than traps. Lastly, the growth mechanism of in situ Fe doping of ZnO NRs was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.Y. Bae, H.W. Seo, J. Park, J. Phys. Chem. B 108, 5206 (2004)

    Google Scholar 

  2. R. Yogamalar, A.C. Bose, Progress in Nanotechnology and Nanomaterials, ISSN2306-0026

  3. G.D. Yuan, W.J. Zhang, J.S. Jie, X. Fan, J.X. Tang, I. Shafiq, S.T. Lee, Adv. Mater. 20, 168 (2008)

    Article  Google Scholar 

  4. H.L. Yan, X.L. Zhong, J.B. Wang, G.J. Huang, S.L. Ding, G.C. Zhou, Appl. Phys. Lett. 90, 082503 (2007)

    Article  ADS  Google Scholar 

  5. X. Fang, J. Li, D. Zhao, D. Shen, B. Li, X. Wang, J. Phys. Chem. C 113, 21208 (2009)

    Article  Google Scholar 

  6. V. Chaitra, K.S. Shamala, V. Vma, IEEE 441 (2011)

  7. R. Mohan, K. Krishnamoorthy, S. Kim, J. Solid State Comm. 152, 375 (2012)

    Article  ADS  Google Scholar 

  8. N. Hongsith, C. Viriyaworasakul, P. Mangkorntong, N. Mangkorntong, S. Choopun, Ceram. Int. 34, 823 (2008)

    Article  Google Scholar 

  9. J.J. Liu, M.H. Yu, W.L. Zhou, J. Appl. Phys. 99, 08M119 (2006)

    Google Scholar 

  10. H. Gong, J.Q. Hu, J.H. Wang, C.H. Ong, F.R. Zhu, Sens. Actuators B Chem. 115, 247 (2006)

    Article  Google Scholar 

  11. P. Banerjee, W.J. Lee, K.R. Bae, S.B. Lee, G.W. Rubloff, J. Appl. Phys. 108, 043504 (2010)

    Article  ADS  Google Scholar 

  12. J. Chen, M. Yu, W. Zhou, K. Sun, Wang, Appl. Phys. Lett. 87, 173119 (2005)

    Article  ADS  Google Scholar 

  13. M. Sun, Q.F. Zhang, J.L. Wu, J. Phys. D Appl. Phys. 40, 2798 (2007)

    Google Scholar 

  14. J. Mi, S. Kim, S. Ju, Opt. Mater. 33, 280 (2011)

    Article  ADS  Google Scholar 

  15. C.L. Hsu, S.J. Chang, Y.R. Lin, S.Y. Tsai, I.C. Chen, Chem. Commun. 28, 3571–3573 (2005)

    Article  Google Scholar 

  16. J. Jie, G. Wang, X. Han, Q. Yu, Y. Liao, G. Li, Chem. Phys. Lett. 387, 466 (2004)

    ADS  Google Scholar 

  17. C. Song, K.W. Geng, F. Zeng, X.B. Wang, Y.X. Shen, F. Pan, Phys. Rev. B 73, 024405 (2006)

    Article  ADS  Google Scholar 

  18. X.C. Wang, W.B. Mi, D.F. Kuang, Appl. Surf. Sci. 256, 1930 (2010)

    Article  ADS  Google Scholar 

  19. C.D. Wagner, G.E. Muilenberg, Physical Electronics Division (Perkin-Elmer Corp., Edina, 1979)

    Google Scholar 

  20. G.C. Allen, M.T. Curtis, A.J. Hooper, P.M. Tucker, J. Chem. Soc. Dalton Trans. 14, 1525 (1974)

    Article  Google Scholar 

  21. B. Xin, P. Wang, D. Ding, J. Liu, Z. Ren, H. Fu, Appl. Surf. Sci. 254, 2569 (2008)

    Article  ADS  Google Scholar 

  22. H.Y. Yang, S.F. Yu, S.P. Lau, T.S. Herng, M. Tanemura, Nanoscale Res. Lett. 5, 247 (2010)

    Article  ADS  Google Scholar 

  23. X. Meng, Z. Shi, X. Chen, X. Zeng, Z. Fu, J. Appl. Phys. 107, 023501 (2010)

    Article  ADS  Google Scholar 

  24. S. Baek, J. Song, S. Lim, Phys. B 399, 101 (2007)

    Article  ADS  Google Scholar 

  25. B.Q. Wang, C.H. Xia, J. Iqbal, N.J. Tang, Z.R. Sun, Y. Lv, Solid State Sci. 11, 1419 (2009)

    Article  ADS  Google Scholar 

  26. J.L. Grosseau-Poussard, B. Panicaud, F. Pedraza, J. Appl. Phys. 94, 784 (2003)

    Article  ADS  Google Scholar 

  27. D.P. Joseph, C. Venkateswaran, J. At. Mol. Opt. Phys. (2011). doi:10.1155/2011/270540

    Google Scholar 

  28. E. Burstein, Phys. Rev. 93, 632 (1954)

    Article  ADS  Google Scholar 

  29. T.S. Moss, Proc. Phys. Soc. B 67, 775 (1954)

    Article  ADS  Google Scholar 

  30. K. Byrappa, A.K. Subramani, S. Ananda, K.M.L. Rai, R. Dinesh, Y. Masahiro, Bull. Mater. Sci. 29, 37 (2007)

    Google Scholar 

  31. W. Webb, R. Dragsdorf, W. Forgeng, Phys. Rev. 108, 498 (1957)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The financial support of USM short term Grant (304/PBAHAN/60311011) and USM RU-PRGS Grant project (1001/PBAHAN/8036009) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swee-Yong Pung.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abd Aziz, S.N.Q.A., Pung, SY. & Lockman, Z. Growth of Fe-doped ZnO nanorods using aerosol-assisted chemical vapour deposition via in situ doping. Appl. Phys. A 116, 1801–1811 (2014). https://doi.org/10.1007/s00339-014-8333-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8333-3

Keywords

Navigation