Skip to main content
Log in

Structural, electronic and magnetic properties of C59Ir, C58Ir2, and C69Ir heterofullerene nano-cages: first principles study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We studied the structural, electronic, and magnetic properties of C59Ir, C58Ir2, and C69Ir heterofullerenes by employing density functional theory and the generalized gradient approximation. There are six distinct isomers of C58Ir2 with high probability to form stable structures. The most stable structure of the C69Ir heterofullerene was investigated by comparing the iridium binding energies at the different atomic sites on the D5h C70 cage. There is a strong hybridization between the atomic orbitals of the iridium and those of the carbon atoms, leading to the spin quenching of the iridium atoms in the most stable C58Ir2 heterofullerene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.W. Kroto, J.R. Heath, S.C.O. Brien, R.F. Curl, R.E. Smalley, Nature 318, 162 (1985)

    Article  ADS  Google Scholar 

  2. W. Kratschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, Nature 347, 354 (1990)

    Article  ADS  Google Scholar 

  3. J.R. Heath, S.C.O. Brien, Q. Zhang, Y. Liu, R.F. Curl, H.W. Kroto, F.K. Tittle, R.E. Smalley, J. Am. Chem. Soc. 107, 7779 (1985)

    Article  Google Scholar 

  4. R. Tellgmann, N. Krawez, S.-H. Li, I.V. Hertel, E.E.B. Campbell, Nature 382, 407 (1996)

    Article  ADS  Google Scholar 

  5. S. Nagao, T. Kurikawa, K. Miyajima, A. Nakajima, K. Kaya, J. Phys. Chem. A 102, 4495 (1998)

    Article  Google Scholar 

  6. T. Guo, C. Jin, R.E. Smalley, J. Phys. Chem. 95, 4948 (1991)

    Article  Google Scholar 

  7. J.C. Hummelen, B. Knight, J. Pavlovich, R. Gonzalez, F. Wudl, Science 269, 1554 (1995)

    Article  ADS  Google Scholar 

  8. C. Ray, M. Peliarin, J.L. Lerme, J.L. Vialle, M. Broyer, X. Blase, P. Melinon, P. Keghelian, A. Perez, Phys. Rev. Lett. 80, 5365 (1998)

    Article  ADS  Google Scholar 

  9. J.J. Stry, J.F. Garvey, Chem. Phys. Lett. 243, 199 (1995)

    Article  ADS  Google Scholar 

  10. C. Moschel, M. Jansen, Z. Anorg. Allg. Chem. 625, 175 (1999)

    Article  Google Scholar 

  11. T. Ohtsuki, K. Ohno, K. Shiga, Y. Kawazoe, Y. Maruyama, K. Masumoto, J. Chem. Phys. 112, 2834 (2000)

    Article  ADS  Google Scholar 

  12. W. Branz, I.M.L. Billas, N. Malinowski, F. Tast, M. Heinebrodt, T.P. Martin, J. Chem. Phys. 109, 3425 (1998)

    Article  ADS  Google Scholar 

  13. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, New York, 1996)

    Google Scholar 

  14. J. Lu, L. Ge, X.W. Zhang, X. Zaho, Mod. Phys. Lett. B 14, 23 (2000)

    Article  ADS  Google Scholar 

  15. M.R. Manna, R.H. Xie, W.H. Smith Jr., Chem. Phys. Lett. 387, 101 (2004)

    Article  ADS  Google Scholar 

  16. Y. Liang, Z. Shang, X. Xu, X. Zhao, J. Mol. Struct., Theochem 728, 225 (2005)

    Article  Google Scholar 

  17. Z. Chen, X. Zhao, A. Tang, J. Phys. Chem. A 103, 10961 (1999)

    Article  Google Scholar 

  18. W. Andreoni, A. Curioni, K. Holczer, K. Prassidess, N. Kesha-var, J.C. Hummelen, F. Wadl, J. Am. Chem. Soc. 118, 11335 (1996)

    Article  Google Scholar 

  19. A. Hirsch, B. Nuber, Acc. Chem. Res. 32, 795 (1999)

    Article  Google Scholar 

  20. J.C. Hummelen, C. Bellavia-Lund, F. Wudl, Top. Curr. Chem. 199, 93 (1999)

    Article  Google Scholar 

  21. M.B. Javan, N. Tajabor, M. Behdani, M. Rezaei-Roknabadi, Physica B 405, 4937 (2010)

    Article  ADS  Google Scholar 

  22. G. Li, R.F. Sabirianov, J. Lu, X.C. Zeng, W.N. Mei, J. Chem. Phys. 128, 074304 (2008)

    Article  ADS  Google Scholar 

  23. I.M.L. Billas, W. Branz, N. Malinowski, F. Tast, N. Heinebrodt, T.P. Martin, C. Massobriot, M. Boerott, M. Parrinello, Nanostruct. Mater. 12, 1071 (1999)

    Article  Google Scholar 

  24. Z.F. Chen, K.Q. Ma, Y.M. Pan, X.Z. Zhao, A.C. Tang, Can. J. Chem. 77, 291 (1999)

    Article  Google Scholar 

  25. N. Kurita, K. Kobayashi, H. Kumahora, K. Tago, Phys. Rev. B 48, 7 (1993)

    Google Scholar 

  26. H.P. Wu, K.U. Deng, J.L. Yang, J. Nanjing Univ. Sci. Technol. 28, 194 (2004)

    Google Scholar 

  27. C. Tang, K. Deng, W. Tan, Y. Yuan, Y. Lau, J. Yang, X. Wang, Eur. Phys. J. D 43, 125 (2007)

    Article  ADS  Google Scholar 

  28. A. Hayashi, Y. Xie, J.M. Poblet, J.M. Campanera, C.B. Lebrilla, A.L. Balch, J. Phys. Chem. A 108, 2192 (2004)

    Article  Google Scholar 

  29. D. Changgen, Y. Jinlong, H. Rongsheng, W. Kelin, Phys. Rev. A 64, 043201 (2001)

    Article  ADS  Google Scholar 

  30. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  31. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  32. T. Ozaki, Phys. Rev. B 67, 155108 (2003)

    Article  ADS  Google Scholar 

  33. T. Ozaki, H. Kino, Phys. Rev. B 69, 195113 (2004)

    Article  ADS  Google Scholar 

  34. T. Ozaki, H. Kino, Phys. Rev. B 72, 045121 (2005)

    Article  ADS  Google Scholar 

  35. K. Hedberg, L. Hedberg, D.S. Bethune, C.A. Brown, H.C. Dron, R.D. Johnson, M. Devries, Science 254, 410 (1991)

    Article  ADS  Google Scholar 

  36. S.M. Lee, R.J. Nicholls, D. Nguyen-Manh, D.G. Pettifor, G.A.D. Briggs, S. Lazar, D.A. Pankhurst, D.J.H. Cockayne, Chem. Phys. Lett. 404, 206 (2005)

    Article  ADS  Google Scholar 

  37. A.V. Nikolaev, T.J.S. Dennis, K. Prassides, A.K. Soper, Chem. Phys. Lett. 223, 143 (1994)

    Article  ADS  Google Scholar 

  38. K. Fukui, Acc. Chem. Res. 4, 57 (1971)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Bezi Javan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezi Javan, M., Ebrahimi, S. Structural, electronic and magnetic properties of C59Ir, C58Ir2, and C69Ir heterofullerene nano-cages: first principles study. Appl. Phys. A 114, 529–536 (2014). https://doi.org/10.1007/s00339-013-7606-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7606-6

Keywords

Navigation