Skip to main content
Log in

Structures of BiInSn nanoparticles formed through laser ablation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The eutectic alloy of BiInSn was ablated in water by UV pulsed radiation. Electron microscopy of the ablated material shows spherical particles that fall into three size regimes: those with diameters of ∼0.5 μm, crystalline and amorphous particles with dimensions of ∼30 nm, and amorphous particles that are approximately 1 nm across. The 30-nm amorphous particles are homogeneous, while there are two types of 30-nm crystalline particles, those that separate into three phases and those that are homogeneous. The existence of different characteristic sizes is explained by two mechanisms: phase explosion and Rayleigh instability of the ejected melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 108, 845 (2008)

    Article  Google Scholar 

  2. J. Luo, L. Wang, D. Mott, P.N. Njoki, N. Kariuki, C.-J. Zhong, T. He, J. Mater. Chem. 16, 1665 (2006)

    Article  Google Scholar 

  3. C.-J. Zhong, J. Luo, P.N. Njoki, D. Mott, B. Wanjala, R. Loukrakpam, S. Lim, L. Wang, B. Fang, Z. Xu, Energy Environ. Sci. 1, 454 (2008)

    Article  Google Scholar 

  4. S.J. Shin, J. Guzman, C.-W. Yuan, C.Y. Liao, C.N. Boswell-Koller, P.R. Stone, O.D. Dubon, A.M. Minor, M. Watanabe, J.W. Beeman, K.M. Yu, J.W. Ager, D.C. Chrzan, E.E. Haller, Nano Lett. 10, 2794 (2010)

    Article  ADS  Google Scholar 

  5. M. Shintaku, H. Suzuki, K. Kamitsuji, C. Kaito, Jpn. J. Appl. Phys. 44, 5296 (2005)

    Article  ADS  Google Scholar 

  6. C.T. Schamp, W.A. Jesser, Metall. Mater. Trans. 37A, 1825 (2006)

    Article  Google Scholar 

  7. E.A. Sutter, P.W. Sutter, ACS Nano 4, 4943 (2010)

    Article  Google Scholar 

  8. E. Sutter, P. Sutter, Nano Lett. 8, 411 (2008)

    Article  ADS  Google Scholar 

  9. E. Sutter, P. Sutter, Nanotechnology 22, 295605 (2011)

    Article  Google Scholar 

  10. S. Barcikowski, F. Mafune, J. Phys. Chem. C 115(special issue), 4985 (2011)

    Article  Google Scholar 

  11. H. Zeng, X.-W. Du, S.C. Singh, S.A. Kulinich, S. Yang, J. He, W. Cai, Adv. Funct. Mater. 22, 1333 (2012)

    Article  Google Scholar 

  12. O.R. Musaev, A.E. Midgley, D.V.S. Muthu, J.M. Wrobel, M.B. Kruger, Mater. Lett. 63, 893 (2009)

    Article  Google Scholar 

  13. O.R. Musaev, V. Dusevich, D.M. Wieliczka, J.M. Wrobel, M.B. Kruger, J. Appl. Phys. 104, 084316 (2008)

    Article  ADS  Google Scholar 

  14. O.R. Musaev, A.E. Midgley, J.M. Wrobel, J. Yan, M.B. Kruger, J. Appl. Phys. 106, 054306 (2009)

    Article  ADS  Google Scholar 

  15. O.R. Musaev, J.M. Wrobel, D.M. Wieliczka, V. Dusevich, M.B. Kruger, Physica E 40, 3147 (2008)

    Article  ADS  Google Scholar 

  16. M.M. Martynyuk, Phys. Combust. Explos. 13, 178 (1977)

    Article  Google Scholar 

  17. A. Miotello, R. Kelly, Appl. Phys. Lett. 67, 3535 (1995)

    Article  ADS  Google Scholar 

  18. W.T. Nichols, T. Sasaki, N. Koshizaki, J. Appl. Phys. 100, 114912 (2006)

    Article  ADS  Google Scholar 

  19. P.G. Drazin, W.H. Reid, Hydrodynamic Instability (Cambridge University Press, London, 1981)

    Google Scholar 

  20. W.A. Sirignano, C. Mehring, Prog. Energy Combust. Sci. 26, 609 (2000)

    Article  Google Scholar 

  21. C.W. Yuan, S.J. Shin, C.Y. Liao, J. Guzman, P.R. Stone, M. Watanabe, I.J.W. Ager, E.E. Haller, D.C. Chrzan, Appl. Phys. Lett. 93, 193114 (2008)

    Article  ADS  Google Scholar 

  22. J. Greeley, M. Mavrikakis, Nat. Mater. 3, 810 (2004)

    Article  ADS  Google Scholar 

  23. J. Jakobi, S. Petersen, A. Menendez-Manjon, P. Wegener, S. Barcikowski, Langmuir 26, 6892 (2010)

    Article  Google Scholar 

  24. O.R. Musaev, E.A. Sutter, J.M. Wrobel, M.B. Kruger, J. Nanopart. Res. 14, 654 (2012)

    Article  Google Scholar 

  25. J. Jakobi, A. Menendez-Manjon, V.S.K. Chakravadhanula, L. Kienle, P. Wagener, S. Barcikowski, Nanotechnology 22, 145601 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by NSF Contract Nos. DMR-0605493 and DMR-0923166. Research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. R. Musaev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musaev, O.R., Sutter, E., Wrobel, J.M. et al. Structures of BiInSn nanoparticles formed through laser ablation. Appl. Phys. A 110, 329–333 (2013). https://doi.org/10.1007/s00339-012-7244-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7244-4

Keywords

Navigation