Skip to main content

Advertisement

Log in

Structure and size control of ZnO nanoparticles by applying high pressure to ambient liquid in liquid-phase laser ablation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We synthesized ZnO nanoparticles by laser ablation of a Zn target in water at pressures up to 30 MPa. We observed the enhancement of the crystallinity of synthesized ZnO nanoparticles when high pressure was applied to ambient water. In addition, we found that ZnO nanoparticles with smaller sizes were synthesized by pressurizing ambient water. Considering our previous understanding on the effect of high pressure applied to ambient liquid, the controls of the structure and the size of nanoparticles were considered to be obtained via the controls of the dynamics of laser ablation plasma and ablation-induced cavitation bubble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, H. Sawabe, J. Phys. Chem. B 104, 8333 (2000)

    Article  Google Scholar 

  2. F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, H. Sawabe, J. Phys. Chem. B 104, 9111 (2000)

    Article  Google Scholar 

  3. F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, H. Sawabe, J. Phys. Chem. B 105, 5114 (2001)

    Article  Google Scholar 

  4. T. Tsuji, M. Watanabe, M. Tsuji, Appl. Surf. Sci. 211, 189 (2003)

    Article  ADS  Google Scholar 

  5. T. Sakka, K. Saito, Y.H. Ogata, Appl. Surf. Sci. 197–198, 246 (2002)

    Article  Google Scholar 

  6. N. Takada, T. Sasaki, K. Sasaki, Appl. Phys. A 93, 833 (2008)

    Article  ADS  Google Scholar 

  7. C. Brennen, Cavitation and Bubble Dynamics (Oxford University Press, London, 1995)

    Google Scholar 

  8. G.W. Yang, J.B. Wang, Q.X. Liu, J. Phys. Condens. Matter 10, 7923 (1998)

    Article  ADS  Google Scholar 

  9. P. Liu, Y.L. Cao, H. Cui, X.Y. Chen, G.W. Yang, Chem. Mater. 20, 494 (2008)

    Article  Google Scholar 

  10. X.Y. Chen, H. Cui, P. Liu, G.W. Yang, Chem. Mater. 20, 2035 (2008)

    Article  Google Scholar 

  11. C.H. Liang, Y. Shimizu, T. Sasaki, N. Koshizaki, Appl. Phys. A 80, 819 (2005)

    Article  ADS  Google Scholar 

  12. T. Tsuji, K. Iryo, N. Watanabe, M. Tsuji, Appl. Surf. Sci. 202, 80 (2002)

    Article  ADS  Google Scholar 

  13. S.I. Dolgaev, A.V. Simakin, V.V. Voronov, G.A. Shafeev, F. Bozon-Verduraz, Appl. Surf. Sci. 186, 546 (2002)

    Article  ADS  Google Scholar 

  14. N.V. Tarasenko, A.V. Butsen, E.A. Nevar, N.A. Savastenko, Appl. Surf. Sci. 252, 4439 (2006)

    Article  ADS  Google Scholar 

  15. N. Takada, T. Nakano, K. Sasaki, Appl. Surf. Sci. 255, 9572 (2009)

    Article  ADS  Google Scholar 

  16. K. Sasaki, T. Nakano, W. Soliman, N. Takada, Appl. Phys. Express 2, 046501 (2009)

    Article  ADS  Google Scholar 

  17. W. Soliman, N. Takada, K. Sasaki, Jpn. J. Appl. Phys. 50, 108003 (2011)

    Article  ADS  Google Scholar 

  18. S.C. Singh, R. Gopal, Physica E 40, 724 (2008)

    Article  ADS  Google Scholar 

  19. X. Zhang, H. Zeng, W. Cai, Mater. Lett. 63, 191 (2009)

    Article  Google Scholar 

  20. W. Soliman, N. Takada, K. Sasaki, Appl. Phys. Express 3, 035201 (2010)

    Article  ADS  Google Scholar 

  21. W. Soliman, T. Nakano, N. Takada, K. Sasaki, Jpn. J. Appl. Phys. 49, 116202 (2010)

    Article  ADS  Google Scholar 

  22. E.A. Meulenkamp, J. Phys. Chem. B 102, 5566 (1998)

    Article  Google Scholar 

  23. M.A. Gondal, Q.A. Drmosh, Z.H. Yamani, T.A. Saleh, Appl. Surf. Sci. 256, 298 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas “Frontier Science of Interactions between Plasmas and Nano-Interfaces” (No. 21110004) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. W. Soliman would like to thank the financial support from the Egyptian Ministry of Higher Education during her stay in Nagoya University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soliman, W., Takada, N., Koshizaki, N. et al. Structure and size control of ZnO nanoparticles by applying high pressure to ambient liquid in liquid-phase laser ablation. Appl. Phys. A 110, 779–783 (2013). https://doi.org/10.1007/s00339-012-7152-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7152-7

Keywords

Navigation