Skip to main content
Log in

Origins of waveguiding in femtosecond laser-structured LiNbO3

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Femtosecond laser-induced structural changes in LiNbO3 are studied. Depending on the laser processing parameters two different types of modification are identified and their origin is discussed. Both types of modification can be described within the framework of induced lattice defects. For strong material damage a refractive index increase can be obtained due to the induced stress field. By appropriate tailoring of this stress field thermally stable and highly symmetric waveguides can be obtained well suited for nonlinear integrated-optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.N. Korkishko, V.A. Fedorov, Ion Exchange in Single Crystals for Integrated Optics and Optoelectronics, 1st edn. (Cambridge International Science Publishing, 1999)

  2. K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21, 1729 (1996)

    Article  ADS  Google Scholar 

  3. S. Nolte, M. Will, J. Burghoff, A. Tünnermann, Appl. Phys. A 77, 109 (2003)

    Article  ADS  Google Scholar 

  4. L. Gui, B. Xu, T.C. Chong, IEEE Photon. Technol. Lett. 16, 1337 (2004)

    Article  ADS  Google Scholar 

  5. R.R. Thomson, S. Campbell, I.J. Blewett, A.K. Kar, D.T. Reid, Appl. Phys. Lett. 88, 111109 (2006)

    Article  ADS  Google Scholar 

  6. J. Burghoff, C. Grebing, S. Nolte, A. Tünnermann, Appl. Surf. Sci. (2007) DOI: 10.1016/j.apsusc.2007.02.148

  7. A.H. Nejadmalayeri, P.R. Herman, Opt. Lett. 31, 2987 (2006)

    Article  ADS  Google Scholar 

  8. J. Burghoff, H. Hartung, S. Nolte, A. Tünnermann, Appl. Phys. A 86, 165 (2007)

    Article  ADS  Google Scholar 

  9. T. Gorelik, M. Will, S. Nolte, A. Tünnermann, U. Glatzel, Appl. Phys. A 76, 309 (2003)

    Article  ADS  Google Scholar 

  10. V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R.P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, P. Laporta, Appl. Phys. Lett. 85, 1122 (2004)

    Article  ADS  Google Scholar 

  11. A.H. Nejadmalayeri, P.R. Herman, J. Burghoff, M. Will, S. Nolte, A. Tünnermann, Opt. Lett. 30, 964 (2005)

    Article  ADS  Google Scholar 

  12. K. Buse, Appl. Phys. B 64, 273 (1997)

    Article  ADS  Google Scholar 

  13. F.S. Chen, J. Appl. Phys. 40, 3389 (1969)

    Article  ADS  Google Scholar 

  14. O. Beyer, I. Breunig, F. Kalkum, K. Buse, Appl. Phys. Lett. 88, 051120 (2006)

    Article  ADS  Google Scholar 

  15. Y.N. Korkishko, V.A. Fedorov, J. Appl. Phys. 82, 1010 (1997)

    Article  ADS  Google Scholar 

  16. U. Schlarb, K. Betzler, Phys. Rev. B 48, 15613 (1993)

    Article  ADS  Google Scholar 

  17. S. Mailis, C. Riziotis, I.T. Wellington, P.G.R. Smith, C.B.E. Gawith, R.W. Eason, Opt. Lett. 28, 1433 (2003)

    ADS  Google Scholar 

  18. A. Muir, G. Daniell, C. Please, I. Wellington, S. Mailis, R. Eason, Appl. Phys. A 83, 389 (2006)

    Article  ADS  Google Scholar 

  19. D. Bäuerle, Laser Processing and Chemistry (Springer, Berlin, 1996)

    Google Scholar 

  20. P.D. Townsend, P.J. Chandler, L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, 1994)

  21. J. Rams, J. Olivares, P.J. Chandler, P.D. Townsend, J. Appl. Phys. 87, 3199 (2000)

    Article  ADS  Google Scholar 

  22. J. Rams, J. Olivares, P.J. Chandler, P.D. Townsend, J. Appl. Phys. 84, 5180 (1998)

    Article  ADS  Google Scholar 

  23. R.S. Weis, T.K. Gaylord, Appl. Phys. A 37, 191 (1985)

    Article  ADS  Google Scholar 

  24. S.H. Wemple, M. DiDomenico Jr., I. Camlibel, Appl. Phys. Lett. 12, 209 (1968)

    Article  ADS  Google Scholar 

  25. K. Sugii, M. Fukuma, H. Iwasaki, J. Mater. Sci. 13, 523 (1978)

    Article  ADS  Google Scholar 

  26. C. Gerthsen, Physik, 8th edn. (Springer, Berlin, 1964)

  27. V.V. Atuchin, Nucl. Instrum. Methods Phys. Res. B 168, 498 (2000)

    Article  ADS  Google Scholar 

  28. H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, D.-Y. Shen, Appl. Opt. 40, 3759 (2001)

    ADS  Google Scholar 

  29. H. Åhlfeldt, J. Webjörn, P.A. Thomas, S.J. Teat, J. Appl. Phys. 77, 4467 (1995)

    Article  ADS  Google Scholar 

  30. M. DiDomenico Jr., S.H. Wemple, J. Appl. Phys. 40, 720 (1969)

    Article  ADS  Google Scholar 

  31. M. Will, J. Burghoff, S. Nolte, A. Tünnermann, F. Wunderlich, K. Goetz, Proc. SPIE 5714, 261 (2005)

    Article  ADS  Google Scholar 

  32. COMSOL 3.2, http://www.comsol.com

  33. J.F. Nye, Physical Properties of Crystals (Oxford University Press, Oxford, 1985)

    Google Scholar 

  34. S. Nolte, J. Burghoff, M. Will, A. Tünnermann, Proc. SPIE 5340, 164 (2004)

    Article  ADS  Google Scholar 

  35. J. Burghoff, C. Grebing, S. Nolte, A. Tünnermann, Appl. Phys. Lett. 89, 081108 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Burghoff.

Additional information

PACS

61.80.Ba; 77.84.Dy; 42.65.Re; 42.82.Et

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burghoff, J., Nolte, S. & Tünnermann, A. Origins of waveguiding in femtosecond laser-structured LiNbO3 . Appl. Phys. A 89, 127–132 (2007). https://doi.org/10.1007/s00339-007-4152-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4152-0

Keywords

Navigation