Skip to main content
Log in

Computer simulations of gold nanowire formation: the role of outlayer atoms

Applied Physics A Aims and scope Submit manuscript

Abstract

Metallic nanowires (NWs) have been the object of intense theoretical and experimental investigations in the last years. In this work we present and review a new methodology we developed to study NW formation from mechanical stretching. This methodology is based on tight-binding molecular dynamics techniques using second-moment approximations. This methodology had been proven to be very effective in the study of NWs, reliably reproducing the main experimentally observed structural features. We have also investigated the problem of determining from what regions the atoms composing the linear atomic chains come. Our results show that ∼90% of these atoms come from outmost external layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agraït N, Yeati AL, van Ruitenbeek JM (2003) Phys Rep 377:81

    Article  ADS  Google Scholar 

  2. Landman U, Luedtke WD, Burnham NA, Colton RJ (1990) Science 248:454

    Article  ADS  Google Scholar 

  3. Krans JM, van Ruitenbeek JM, Fisun VV, Yanson IK, de Jongh LJ (1995) Nature (Lond) 375:767

    Article  ADS  Google Scholar 

  4. Landman U, Luedtke WD, Salisbury BE, Whetten RL (1996) Phys Rev Lett 77:1362

    Article  PubMed  ADS  Google Scholar 

  5. Ohnishi H, Kondo Y, Takayanagi K (1998) Nature 395:780

    Article  ADS  Google Scholar 

  6. Yanson AI, Rubio Bollinger G, van den Brom HE, Agraït N, van Ruitenbeek JM (1998) Nature 395:783

    Article  ADS  Google Scholar 

  7. Sánchez D-Portal, Artacho E, Junquera J, Ordejón P, Garcia A, Soler JM (1999) Phys Rev Lett 83:3884

    Article  ADS  Google Scholar 

  8. Rodrigues V, Fuhrer T, Ugarte D (2000) Phys Rev Lett 85:4124

    Article  PubMed  ADS  Google Scholar 

  9. Medina E, Hamsy A, Serena PA (2001) Phys Rev Lett 86:5574

    Article  PubMed  ADS  Google Scholar 

  10. Garía-Mochales P, Peláes S, Serena PA, Medina E, Hamsy A (2005) Appl Phys A

  11. Sorensen MR, Brandbyge M, Jacobsen W (1998) Phys Rev B 57:3283

    Article  ADS  Google Scholar 

  12. da Silva EZ, da Silva AJR, Fazzio A (2001) Phys Rev Lett 87:256102

    Article  PubMed  ADS  Google Scholar 

  13. Kang JW, Hwang HJ (2002) Nanotechnology 13:503

    Article  ADS  Google Scholar 

  14. Stafford CA, Baeriswyl D, Bürki J (1997) Phys Rev Lett 79:2863

    Article  ADS  Google Scholar 

  15. Yannouleas C, Landman U (1997) J Phys Chem B 101:5780

    Article  Google Scholar 

  16. Lang ND (1997) Phys Rev Lett 79:1357

    Article  ADS  Google Scholar 

  17. Wan CC, Mozos J-L, Taraschi G, Wang J, Go H (1997) Appl Phys Lett 71:419

    Article  ADS  Google Scholar 

  18. Rego LGC, Rocha AR, Rodrigues V, Ugarte D (2003) Phys Rev B 67:045412

    Article  ADS  Google Scholar 

  19. Barnet RN, Landman U (1997) Nature (Lond) 87:788

    ADS  Google Scholar 

  20. Nakamura A, Brandbyge M, Hansen LB, Jacobsen KW (1999) Phys Rev Lett 82:1538

    Article  ADS  Google Scholar 

  21. Legoas SB, Galvão DS, Rodrigues V, Ugarte D (2002) Phys Rev Lett 88:076105

    Article  PubMed  ADS  Google Scholar 

  22. Kruger D, Fuchs H, Rousseau R, Marx D, Parrinello M (2002) Phys Rev Lett 89:186402

    Article  PubMed  ADS  Google Scholar 

  23. Rodrigues V, Bettini J, Rocha AR, Rego LGC, Ugarte D (2002) Phys Rev B 65:153402

    Article  Google Scholar 

  24. Cleri F, Rosato V (1993) Phys Rev B 48:22

    Article  ADS  Google Scholar 

  25. Tomanek D, Aligia AA, Balsero CA (1985) Phys Rev B 32:5051

    Article  ADS  Google Scholar 

  26. Ducastelle F (1970) Phys J 31:1055

    Google Scholar 

  27. Daw MS, Baskes MI (1984) Phys Rev B 29:6443

    Article  ADS  Google Scholar 

  28. Cleri F, Mazzone G, Rosato V (1993) Phys Rev B 47:14541

    Article  Google Scholar 

  29. Kittel C (1996) Introduction to Solid State Physics. Wiley, New York

    Google Scholar 

  30. Simmons G, Wang H (1971) Single Crystal Elastic Constants and Calculated Aggregated Properties. MIT Press, Cambridge, MA

    Google Scholar 

  31. Allen MP, Tildesley DJ (1996) Computer Simulation of Liquids. Oxford University Press, Oxford

    Google Scholar 

  32. Kondo Y, Takayanagi K (1997) Phys Rev Lett 79:3455

    Article  ADS  Google Scholar 

  33. Koizumi H, Oshima Y, Kondo Y, Takayanagi K (2001) Ultramicroscopy 88:17

    Article  PubMed  Google Scholar 

  34. Rodrigues V, Ugarte D (2001) Phys Rev B 64:073405

    Article  Google Scholar 

  35. Kizuka T, Umehaa S, Fujosawa S (2001) Jpn J Appl Phys 240:L71

    Article  ADS  Google Scholar 

  36. Muller CJ, van Ruitembeek JM, de Jongh LJ (1992) Physica C 191:485

    Article  Google Scholar 

  37. Häberlen OD, Chung SC, Rösch N (1994) Int J Quantum Chem 28:595

    Article  Google Scholar 

  38. Coura PZ, Legoas SB, Moreira AS, Sato F, Rodrigues V, Dantas SO, Ugarte D, Galvão DS (2004) Nano Lett 47:1187

    Article  Google Scholar 

  39. González JC, Rodrigues V, Bettini J, Rego LGC, Coura PZ, Dantas SO, Sato F, Galvão DS, Ugarte D (2004) Phys Rev Lett 93:126103

    Article  PubMed  ADS  Google Scholar 

  40. Sato F et al., unpublished

  41. Legoas SB, Rodrigues V, Ugarte D, Galvão DS (2004) Phys Rev Lett 93:216103

    Article  PubMed  ADS  Google Scholar 

  42. Correia A, Marquéz M, García N (1997) In: Nanowires, Serena P, García N (eds). (NATO ASI Ser. E: Appl. Sci. Vol. 340) Kluwer, Dordrecht, p 311

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.O. Dantas.

Additional information

PACS

66.30.Pa; 68.65.-k; 68.03.Hj

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, F., Moreira, A., Coura, P. et al. Computer simulations of gold nanowire formation: the role of outlayer atoms. Appl. Phys. A 81, 1527–1531 (2005). https://doi.org/10.1007/s00339-005-3390-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3390-2

Keywords

Navigation