Skip to main content
Log in

Variation in calcification rate of Acropora downingi relative to seasonal changes in environmental conditions in the northeastern Persian Gulf

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

There is a strong interest in understanding how coral calcification varies with changing environmental conditions, especially given the projected changes in temperature and aragonite saturation due to climate change. This study explores in situ variation in calcification rates of Acropora downingi in the northeastern Persian Gulf relative to seasonal changes in temperature, irradiance and aragonite saturation state (Ω arag). Calcification rates of A. downingi were highest in the spring and lowest in the winter, and intra-annual variation in calcification rate was significantly related to temperature (r 2 = 0.30) and irradiance (r 2 = 0.36), but not Ω arag (r 2 = 0.02). Seasonal differences in temperature are obviously confounded by differences in other environmental conditions and vice versa. Therefore, we used published relationships from experimental studies to establish which environmental parameter(s) (temperature, irradiance, and/or Ω arag) placed greatest constraints on calcification rate (relative to the maximum spring rate) in each season. Variation in calcification rates was largely attributable to seasonal changes in irradiance and temperature (possibly ~57.4 and 39.7% respectively). Therefore, we predict that ocean warming may lead to increased rates of calcification during winter, but decelerate calcification during spring, fall and especially summer, resulting in net deceleration of calcification for A. downingi in the Persian Gulf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Albright R, Langdon C, Anthony KRN (2013) Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, central Great Barrier Reef. Biogeosciences 10:6747–6758

    Article  CAS  Google Scholar 

  • Al-Horani FA (2005) Effects of changing seawater temperature on photosynthesis and calcification in the scleractinian coral Galaxea fascicularis, measured with O2, Ca2+ and pH microsensors. Scientia Marina 69:347–354

    Article  CAS  Google Scholar 

  • Allemand D, Tambutté E, Zoccola D, Tambutté S (2011) Coral calcification, cells to reefs. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Amsterdam, pp 119–150

    Chapter  Google Scholar 

  • Anthony KRN, Hoegh-Guldberg O (2003) Variation in coral photosynthesis, respiration and growth characteristics in contrasting light microhabitats: an analogue to plants in forest gaps and understoreys? Funct Ecol 17:246–259

    Article  Google Scholar 

  • Bates NR, Amat A, Andersson AJ (2010) Feedbacks and responses of coral calcification on the Bermuda reef system to seasonal changes in biological processes and ocean acidification. Biogeosciences 7:2509–2530

    Article  CAS  Google Scholar 

  • Bednarz V, van Hoytema N, Cardini U, Naumann M, Al-Rshaidat M, Wild C (2015) Dinitrogen fixation and primary productivity by carbonate and silicate reef sand communities of the Northern Red Sea. Mar Ecol Prog Ser 527:47–57

    Article  CAS  Google Scholar 

  • Cantin NE, Lough JM (2014) Surviving coral bleaching events: Porites growth anomalies on the Great Barrier Reef. PLoS One 9:e88720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantin NE, Cohen AL, Karnauskas KB, Tarrant AM, McCorkle DC (2010) Ocean warming slows coral growth in the central Red Sea. Science 329:322–325

    Article  CAS  PubMed  Google Scholar 

  • Castillo KD, Ries JB, Bruno JF, Westfield IT (2014) The reef-building coral Siderastrea siderea exhibits parabolic responses to ocean acidification and warming. Proc R Soc Lond B Biol Sci 281:20141856

    Article  CAS  Google Scholar 

  • Chalker BE (1981) Simulating light-saturation curves for photosynthesis and calcification by reef-building corals. J Mar Biol 63:135–141

    Article  Google Scholar 

  • Chan NCS, Connolly SR (2013) Sensitivity of coral calcification to ocean acidification: a meta-analysis. Glob Chang Biol 19:282–290

    Article  PubMed  Google Scholar 

  • Chauvin A, Denis V, Cuet P (2011) Is the response of coral calcification to seawater acidification related to nutrient loading? Coral Reefs 30:911–923

    Article  Google Scholar 

  • Clausen CD, Roth AA (1975) Effect of temperature and temperature adaptation on calcification rate in the hermatypic coral Pocillopora damicornis. J Mar Biol 33:93–100

    Article  Google Scholar 

  • Cohen AL, Holcomb M (2009) Why corals care about ocean acidification: uncovering the mechanism. Oceanography (Wash D C) 22:118–127

    Article  Google Scholar 

  • Comeau S, Carpenter RC, Edmunds PJ (2014a) Effects of irradiance on the response of the coral Acropora pulchra and the calcifying alga Hydrolithon reinboldii to temperature elevation and ocean acidification. J Exp Mar Bio Ecol 453:28–35

    Article  Google Scholar 

  • Comeau S, Edmunds PJ, Lantz CA, Carpenter RC (2014b) Water flow modulates the response of coral reef communities to ocean acidification. Sci Rep 4:6681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper TF, De’ath G, Fabricius KE, Lough JM (2008) Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Glob Chang Biol 14:529–538

    Article  Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res A 34:1733–1743

    Article  CAS  Google Scholar 

  • Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO2 measurements. Carbon Dioxide Information Analysis Center, US DOE, Oak Ridge National Laboratory, Oak Ridge, TN, USA

    Google Scholar 

  • Downs CA, Fauth JE, Halas JC, Dustan P, Bemiss J, Woodley CM (2002) Oxidative stress and seasonal coral bleaching. Free Radic Biol Med 33:533–543

    Article  CAS  PubMed  Google Scholar 

  • Elahi R, Edmunds PJ (2007) Tissue age affects calcification in the scleractinian coral Madracis mirabilis. Biol Bull 212:20–28

    Article  PubMed  Google Scholar 

  • Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Chang 1:165–169

    Article  CAS  Google Scholar 

  • Ferrier-Pagès C, Gattuso JP, Jaubert J (1999) Effect of small variations in salinity on the rates of photosynthesis and respiration of the zooxanthellate coral Stylophora pistillata. Mar Ecol Prog Ser 181:309–314

    Article  Google Scholar 

  • Fitt WK, McFarland FK, Warner ME, Chilcoat GC (2000) Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol Oceanogr 45:677–685

    Article  CAS  Google Scholar 

  • Foster T, Short JA, Falter JL, Ross C, McCulloch MT (2014) Reduced calcification in Western Australian corals during anomalously high summer water temperatures. J Exp Mar Bio Ecol 461:133–143

    Article  CAS  Google Scholar 

  • Furla P, Galgani I, Durand I, Allemand D (2000) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J Exp Biol 203:3445–3457

    CAS  PubMed  Google Scholar 

  • Gattuso JP, Frankignoulle M, Bourge I, Romaine S, Buddemeier RW (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Glob Planet Chang 18:37–46

    Article  Google Scholar 

  • Guest JR, Baird AH, Maynard JA, Muttaqin E, Edwards AJ, Campbell SJ, Yewdall K, Affendi YA, Chou LM (2012) Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS One 7:e33353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoegh-Guldberg O, Cai R, Poloczanska ES, Brewer PG, Sundby S, Hilmi K, Fabry VJ, Jung S (2014) The ocean. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York, pp 1655–1731

    Google Scholar 

  • Holcomb M, Tambutté E, Allemand D, Tambutté S (2014) Light enhanced calcification in Stylophora pistillata: effects of glucose, glycerol and oxygen. PeerJ 2:e375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howe SA, Marshall AT (2002) Temperature effects on calcification rate and skeletal deposition in the temperate coral, Plesiastrea versipora (Lamarck). J Exp Mar Bio Ecol 275:63–81

    Article  CAS  Google Scholar 

  • Howells EJ, Beltran VH, Larsen NW, Bay LK, Willis BL, van Oppen MJH (2011) Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat Clim Chang 2:116–120

    Article  Google Scholar 

  • Jokiel PL, Coles SL (1977) Effects of temperature on the mortality and growth of Hawaiian reef corals. J Mar Biol 43:201–208

    Article  Google Scholar 

  • Jokiel PL, Maragos JE, Franzisket L (1978) Coral growth: buoyant weight technique. In: Stoddart DR, Johannes RE (eds) Coral reefs: research methods. UNESCO, Paris, pp 529–541

    Google Scholar 

  • Jokiel PL, Jury CP, Ku’ulei SR (2014) Coral–algae metabolism and diurnal changes in the CO2-carbonate system of bulk sea water. PeerJ 2:e378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleypas JA, McManus JW, Meñez LAB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159

    Article  Google Scholar 

  • Kram SL, Price NN, Donham EM, Johnson MD, Kelly ELA, Hamilton SL, Smith JE (2015) Variable responses of temperate calcified and fleshy macroalgae to elevated pCO2 and warming. ICES J Mar Sci. doi:10.1093/icesjms/fsv168

    Google Scholar 

  • Kuffner IB, Hickey TD, Morrison JM (2013) Calcification rates of the massive coral Siderastrea siderea and crustose coralline algae along the Florida Keys (USA) outer-reef tract. Coral Reefs 32:987–997

    Article  Google Scholar 

  • Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J, Marubini F, Aceves H, Barnett H, Atkinson MJ (2000) Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochem Cycles 14:639–654

    Article  CAS  Google Scholar 

  • Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Bio Ecol 245:22–243

    Article  Google Scholar 

  • Marsh JA (1970) Primary productivity of reef-building calcareous red algae. Ecology 51:255–263

    Article  Google Scholar 

  • Marshall AT (1996) Calcification in hermatypic and ahermatypic corals. Science 271:637–639

    Article  CAS  Google Scholar 

  • Marubini F, Barnett H, Langdon C, Atkinson MJ (2001) Dependence of calcification on light and carbonate ion concentration for the hermatypic coral Porites compressa. Mar Ecol Prog Ser 220:153–162

    Article  CAS  Google Scholar 

  • McMahon A, Santos IR, Cyronak T, Eyre BD (2013) Hysteresis between coral reef calcification and the seawater aragonite saturation state. Geophys Res Lett 40:4675–4679

    Article  CAS  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Article  CAS  Google Scholar 

  • Nakamura E, Yokohama Y, Tanaka J (2004) Photosynthetic activity of a temperate coral Acropora pruinosa (Scleractinia, Anthozoa) with symbiotic algae in Japan. Phycological Research 52:38–44

    Google Scholar 

  • Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA (2014) Mechanisms of reef coral resistance to future climate change. Science 344:895–898

    Article  CAS  PubMed  Google Scholar 

  • Pörtner HO (2010) Oxygen and capacity limitation of thermal tolerance: a matrix for integrating climate related stressors in marine ecosystems. J Exp Biol 213:881–893

    Article  PubMed  Google Scholar 

  • Pratchett MS, Anderson KD, Hoogenboom MO, Widman E, Baird AH, Pandolfi JM, Edmunds PJ (2015) Spatial, temporal and taxonomic variation in coral growth: implications for the structure and function of coral reef ecosystems. Oceanogr Mar Biol Annu Rev 53:215–295

    Article  Google Scholar 

  • Pratchett MS, Munday PL, Wilson SK, Graham NAJ, Cinner JE, Bellwood DR, Jones GP, Polunin NVC, McClanahan TR (2008) Effects of climate-induced coral bleaching on coral-reef fishes: ecological and economic consequences. Oceanogr Mar Biol Annu Rev 46:251–296

    Article  Google Scholar 

  • Reynaud S, Ferrier-pagès C, Boisson F, Allemand D, Fairbanks RG (2004) Effect of light and temperature on calcification and strontium uptake in the scleractinian coral Acropora verweyi. Mar Ecol Prog Ser 279:105–112

    Article  CAS  Google Scholar 

  • Riegl B, Purkis S, Al-Cibahy A, Al-Harthi S, Grandcourt E, Al-Sulaiti K, Baldwin J, Abdel-Moati AM (2012) Coral bleaching and mortality thresholds in the SE Gulf: highest in the world. In: Riegl B, Purkis S (eds) Coral reefs of the Gulf. Springer, Dordrecht, pp 95–105

    Chapter  Google Scholar 

  • Rix L, Bednarz V, Cardini U, van Hoytema N, Al-Horani F, Wild C, Naumann M (2015) Seasonality in dinitrogen fixation and primary productivity by coral reef framework substrates from the northern Red Sea. Mar Ecol Prog Ser 533:79–92

    Article  CAS  Google Scholar 

  • Robbins L, Hansen M, Kleypas JA, Meylan S (2010) CO2Calc—a user-friendly seawater carbon calculator for Windows, Mac OS X and iOS (iPhone). Report 2010-1280, U.S. Geological Survey, Reston, VA, USA

  • Roik A, Roder C, Röthig T, Voolstra CR (2015) Spatial and seasonal reef calcification in corals and calcareous crusts in the central Red Sea. Coral Reefs 35:681–693

    Article  Google Scholar 

  • Schutter M, van Velthoven B, Janse M, Osinga R, Janssen M, Wijffels R, Verreth J (2008) The effect of irradiance on long-term skeletal growth and net photosynthesis in Galaxea fascicularis under four light conditions. J Exp Mar Bio Ecol 367:75–80

    Article  Google Scholar 

  • Silverman J, Lazar B, Erez J (2007) Effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef. J Geophys Res Oceans 112:C05004

    Article  CAS  Google Scholar 

  • Soong K, Chen T (2003) Coral transplantation: regeneration and growth of Acropora fragments in a nursery. Restoration Ecology 11:62–71

    Article  Google Scholar 

  • Tanzil JTI, Brown BE, Dunne RP, Lee JN, Kaandorp JA, Todd PA (2013) Regional decline in growth rates of massive Porites corals in Southeast Asia. Glob Chang Biol 19:3011–3023

    Article  PubMed  Google Scholar 

  • Vajed Samiei J, Saleh A, Mehdinia A, Shirvani A, Sharifi H (2014) Specific thermal regime and coral bleaching pattern in Hengam Island, eastern Persian Gulf. Journal of the Persian Gulf (Marine Science) 5:15–26

    Google Scholar 

  • Vajed Samiei J, Saleh A, Mehdinia A, Shirvani A, Kayal M (2015) Photosynthetic response of Persian Gulf acroporid corals to summer versus winter temperature deviations. PeerJ 3:e1062

    Article  PubMed  PubMed Central  Google Scholar 

  • Valiela I (1984) Marine ecological processes, 2nd edn. Springer-Verlag, New York, p 686

    Book  Google Scholar 

  • Venti A, Andersson A, Langdon C (2014) Multiple driving factors explain spatial and temporal variability in coral calcification rates on the Bermuda platform. Coral Reefs 33:979–997

    Article  Google Scholar 

  • Williams GJ, Price NN, Ushijima B, Aeby GS, Callahan S, Davy SK, Gove JM, Johnson MD, Knapp IS, Shore-Maggio A, Smith JE, Videau P, Work TM (2014) Ocean warming and acidification have complex interactive effects on the dynamics of a marine fungal disease. Proc R Soc Lond B Biol Sci 281:20133069

    Article  CAS  Google Scholar 

  • Winters G, Loya Y, Beer S (2006) In situ measured seasonal variations in Fv/Fm of two common Red Sea corals. Coral Reefs 25:593–598

    Article  Google Scholar 

  • Wórum FP, Carricart-Ganivet JP, Benson L, Golicher D (2007) Simulation and observations of annual density banding in skeletons of Montastraea (Cnidaria:Scleractinia) growing under thermal stress associated with ocean warming. Limnol Oceanogr 52:2317–2323

    Article  Google Scholar 

Download references

Acknowledgments

We thank the diving club Dive Persia for providing lodging during the study. This work was done as a part of Project No. 391-011-08 funded by the Iranian National Institute for Oceanography and Atmospheric Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jahangir Vajed Samiei.

Additional information

Communicated by Biology Editor Dr. Anastazia Banaszak

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vajed Samiei, J., Saleh, A., Shirvani, A. et al. Variation in calcification rate of Acropora downingi relative to seasonal changes in environmental conditions in the northeastern Persian Gulf. Coral Reefs 35, 1371–1382 (2016). https://doi.org/10.1007/s00338-016-1464-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-016-1464-6

Keywords

Navigation