Skip to main content

Advertisement

Log in

An assessment of shallow and mesophotic reef brachyuran crab assemblages on the south shore of O‘ahu, Hawai‘i

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Shallow coral reefs are extensively studied but, although scleractinian corals have been recorded to 165 m, little is known about other mesophotic coral reef ecosystem (MCE) inhabitants. Brachyuran crabs fill many ecological and trophic niches on reefs, making them ideal candidates for evaluating species composition among depths to ask whether MCEs host the same communities as shallower reef communities that have been well studied. Here we deployed autonomous reef monitoring structures for 2 yr on the south shore of O‘ahu along a depth gradient (12, 30, 60, and 90 m) to sample and assess brachyuran crab communities. A total of 663 brachyuran crabs representing 69 morphospecies (16 families) were found. Community composition was not significantly different within depths, but was highly stratified by depth. Each depth was distinct, but the 30 and 60 m depths were least dissimilar from one another. We show that deeper reefs host significantly different brachyuran communities, and at much lower total abundance, than shallow reefs in Hawai‘i, with 4–27 unique morphospecies per depth and only 3 of 69 morphospecies (~4 %) occurring across the entire depth range sampled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Abele LG (1972) Comparative habitat diversity and faunal relationships between the Pacific and Caribbean Panamanian decapod Crustacea: a preliminary report with remarks on the crustacean fauna of Panama. Bull Biol Soc Wash 2:125–138

    Google Scholar 

  • Anderson MJ, Robinson J (2003) Generalized discriminant analysis based on distances. Aust N Z J Stat 45:301–318

    Article  Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: Guide to software and statistical methods. PRIMER-E, Plymouth, UK

    Google Scholar 

  • Bahr KD, Jokiel PL, Toonen RJ (2015) The unnatural history of Kāne‘ohe Bay: coral reef resilience in the face of centuries of anthropogenic impacts. PeerJ 3:e950

    Article  PubMed Central  PubMed  Google Scholar 

  • Bickford D, Lohman DJ, Sodhi NS, Ng PK, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155

    Article  PubMed  Google Scholar 

  • Bongaerts P, Ridgway T, Sampayo EM, Hoegh-Guldberg O (2010) Assessing the “deep reef refugia” hypothesis: focus on Caribbean reefs. Coral Reefs 29:309–327

    Article  Google Scholar 

  • Bongaerts P, Carmichael M, Hay KB, Tonk L, Frade PR, Hoegh-Guldberg O (2015) Prevalent endosymbiont zonation shapes the depth distributions of scleractinian coral species. R Soc Open Sci 2:140297

    Article  PubMed Central  PubMed  Google Scholar 

  • Brainard R, Moffitt R, Timmers M, Paulay G, Plaisance L, Knowlton N, Caley J, Rohrer F, Charette A, Meyer C, Toonen RJ, Godwin S, Martin J, Harris L, Geller J, Moews M (2009) Autonomous reef monitoring structures (ARMS): a tool for monitoring indices of biodiversity in the Pacific Islands. 11th Pacific Science Inter-Congress, Papeete, Tahiti http://webistem.com/psi2009/output_directory/cd1/Data/articles/000442.pdf

  • Bridge TCL, Fabricius KE, Bongaerts P, Wallace CC, Muir PR, Done TJ, Webster JM (2012) Diversity of Scleractinia and Octocorallia in the mesophotic zone of the Great Barrier Reef, Australia. Coral Reefs 31:179–189

    Article  Google Scholar 

  • Bryan DR, Kilfoyle K, Gilmore RG, Spieler RE (2013) Characterization of the mesophotic reef fish community in south Florida, USA. J Appl Ichthyol 29:108–117

    Article  Google Scholar 

  • Castro P (2011) Catalog of the anomuran and brachyuran crabs (Crustacea: Decapoda: Anomura, Brachyura) of the Hawaiian Islands. Zootaxa 2947:1–154

    Google Scholar 

  • Chao A, Colwell RK, Lin CW, Gotelli NJ (2009) Sufficient sampling for asymptotic minimum species richness estimators. Ecology 90:1125–1133

    Article  PubMed  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth, UK

    Google Scholar 

  • Colwell RK (2013) EstimateS: Statistical estimation of species richness and shared species from samples. Version 9. User’s guide and application available at http://purl.oclc.org/estimates

  • Copus JM, Pyle RL, Earle JL (2015a) Neoniphon pencei, a new species of holocentrid (Teleostei: Beryciformes) from Rarotonga, Cook Islands. Biodivers Data J 3:e4180

    Article  PubMed  Google Scholar 

  • Copus JM, Ka‘apu-Lyons C, Pyle RL (2015b) Luzonichthys seaver, a new species of Anthiinae (Perciformes, Serranidae) from Pohnpei, Micronesia. Biodivers Data J 3:e4902

    Article  PubMed  Google Scholar 

  • Costello MJ, Marta Coll, Danovaro R, Halpin P, Ojaveer H, Miloslavich P (2010) A census of marine biodiversity knowledge, resources, and future challenges. PLoS One 5:e12110

    Article  PubMed Central  PubMed  Google Scholar 

  • Edmondson CH (1954) Hawaiian Portunidae. Occasional Papers of Bernice P. Bishop Museum, Honolulu, Hawai‘i 21:217–274

  • Edmondson CH (1959) Hawaiian Grapsidae. Occasional Papers of Bernice P. Bishop Museum, Honolulu, Hawai‘i 22:153–202

  • Edmondson CH (1962) Xanthidae of Hawaii. Occasional Papers of Bernice P. Bishop Museum, Honolulu, Hawai‘i 22:1–309

  • Engstrom NA (1984) Depth limitation of a tropical intertidal xanthid crab, Cataleptodius floridanus, and a shallow-water majid, Pitho aculeate: results of a caging experiment. J Crustacean Biol 4:55–62

    Article  Google Scholar 

  • Fautin D, Dalton P, Incze LS, Leong JAC, Pautzke C, Rosenberg A, Sandifer P, Sedberry G, Tunnell JW Jr, Abbott I, Brainard RE, Brodeur M, Eldredge LG, Feldman M, Moretzsohn F, Vroom PS, Wainstein M, Wolff N (2010) An overview of marine biodiversity in United States waters. PLoS One 5:e11914

    Article  PubMed Central  PubMed  Google Scholar 

  • Garth JS, Haig J, Knudsen JW (1987) Crustacea Decapoda (Brachyura and Anomura) of Enewetak Atoll. In: Devaney DM, Reese ES, Burch BL, Helfrich P (eds) The natural history of Enewetak Atoll. Volume II, Biogeography and systematics. US Department of Energy Office of Scientific and Technical Information, Oak Ridge, TN, pp 235–261

    Google Scholar 

  • Glynn PW (1996) Coral reef bleaching: facts, hypotheses and implications. Glob Chang Biol 2:495–509

    Article  Google Scholar 

  • Goreau TF, Goreau NI (1973) The ecology of Jamaican coral reefs II. Geomorphology, zonation and sedimentary phases. Bull Mar Sci 23:299–464

    Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Hinderstein LM, Marr JCA, Martinez FA, Dowgiallo MJ, Puglise KA, Pyle RL, Zawada DG, Appeldoorn R (2010) Theme section on “Mesophotic coral ecosystems: characterization, ecology, and management”. Coral Reefs 29:247–251

    Article  Google Scholar 

  • Hortal J, Borges PAV, Gaspar C (2006) Evaluating the performance of species richness estimators: sensitivity to sample grain size. J Anim Ecol 75:274–287

    Article  PubMed  Google Scholar 

  • Jokiel PL (1987) Ecology, biogeography and evolution of corals in Hawaii. Trends Ecol Evol 2:179–182

    Article  CAS  PubMed  Google Scholar 

  • Kahng SE, Maragos JE (2006) The deepest, zooxanthellate scleractinian corals in the world? Coral Reefs 25:254–254

    Article  Google Scholar 

  • Kahng SE, Kelley CD (2007) Vertical zonation of megabenthic taxa on a deep photosynthetic reef (50–140 m) in the Au’au Channel, Hawaii. Coral Reefs 26:679–687

    Article  Google Scholar 

  • Kahng SE, Copus JM, Wagner D (2014) Recent advances in the ecology of mesophotic coral ecosystems. Curr Opin Environ Sustain 7:72–81

    Article  Google Scholar 

  • Kahng SE, Garcia-Sais JR, Spalding HL, Brokovich E, Wagner D, Weil E, Hinderstein LM, Toonen RJ (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29:255–275

    Article  Google Scholar 

  • Kane C, Kosaki RK, Wagner D (2014) High levels of mesophotic reef fish endemism in the northwestern Hawaiian Islands. Bull Mar Sci 90:693–703

    Article  Google Scholar 

  • Kay EA (ed) (1994) A natural history of the Hawaiian Islands: selected readings II. University of Hawai‘i Press, Mānoa, HI

    Google Scholar 

  • Knowlton N, Brainard RE, Fisher R, Moews M, Plaisance L, Caley MJ (2010) Coral reef biodiversity. In: McIntyre AD (ed) Life in the world’s oceans. Wiley-Blackwell Publishing Ltd, Chichester, UK, pp 65–77

    Chapter  Google Scholar 

  • Knudsen JW (1960) Aspects of the ecology of the California xanthid crabs. Ecol Monogr 30:165–185

    Article  Google Scholar 

  • Lai JCY, Mendoza JCE, Guinot D, Clark PF, Ng PKL (2011) Xanthidae MacLeay, 1838 (Decapoda: Brachyura: Xanthoidea) systematics: A multi-gene approach with support from adult and zoeal morphology. Zool Anz 250:407–448

    Article  Google Scholar 

  • Lasley RM Jr, Klaus S, Ng PKL (2014) Phylogenetic relationships of the ubiquitous coral reef crab subfamily Chlorodiellinae (Decapoda, Brachyura, Xanthidae). Zoo Scr 44:165–178

    Article  Google Scholar 

  • Leray M, Knowlton N (2015) DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proc Natl Acad Sci U S A 112:2076–2081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lesser MP, Slattery M, Leichter JJ (2009) Ecology of mesophotic coral reefs. J Exp Mar Bio Ecol 375:1–8

    Article  Google Scholar 

  • Liddell WD, Avery WE (2000) Temporal change in hard substrate communities 10–250 m, the Bahamas. Proc 10th Int Coral Reef Symp 1:437–442

  • Liddell WD, Avery WE, Ohlhorst SL (1997) Patterns of benthic community structure, 10–250 m, the Bahamas. Proc 8th Int Coral Reef Symp 1:437–442

  • Luck DG, Forsman ZH, Toonen RJ, Leicht SJ, Kahng SE (2013) Polyphyly and hidden species among Hawai‘i’s dominant mesophotic coral genera, Leptoseris and Pavona (Scleractinia: Agariciidae). PeerJ 1:e132

    Article  PubMed Central  PubMed  Google Scholar 

  • Maragos JE, Jokiel PL (1986) Reef corals of Johnston Atoll: one of the world’s most isolated reefs. Coral Reefs 4:141–150

    Article  Google Scholar 

  • Moberg F, Folke C (1999) Ecological goods and services of coral reef ecosystems. Ecol Econ 29:215–233

    Article  Google Scholar 

  • Monteforte M (1987) The decapod reptantia and stomatopod crustaceans of a typical high island coral reef complex in French Polynesia (Tiahura, Moorea Island): zonation, community composition and trophic structure. Atoll Res Bull 309:1–37

    Article  Google Scholar 

  • Ng PKL, Guinot D, Davie PJF (2008) Systema Brachyororum: Part I. An annotated checklist of extant brachyuran crabs of the world. Raffles Bull Zool 17:1–286

    Google Scholar 

  • Paulay G, Kropp R, Ng PKL, Eldredge LG (2003) The crustaceans and pycnogonids of the Mariana Islands. Micronesica 35–36:456–513

    Google Scholar 

  • Petrescu I, Chatterjee T, Schizas NV (2012) New genus and new species of Cumacea (Crustacea: Peracarida) from the mesophotic coral ecosystem of SW Puerto Rico, Caribbean Sea. Zootaxa 3476:55–61

    Google Scholar 

  • Petrescu I, Chatterjee T, Schizas NV (2013) Two new species of the genus Cumella (Crustacea: Cumacea: Nannastacidae) associated with mesophotic reefs of Puerto Rico and St. Croix, Caribbean Sea. Cah Biol Mar 54:257–262

  • Plaisance L, Knowlton N, Paulay G, Meyer C (2009) Reef-associated crustacean fauna: biodiversity estimates using semi-quantitative sampling and DNA barcoding. Coral Reefs 28:977–986

    Article  Google Scholar 

  • Plaisance L, Caley MJ, Brainard RE, Knowlton N (2011) The diversity of coral reefs: what are we missing? PLoS One 6:e25026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pochon X, Forsman ZH, Spalding HL, Padilla-Gamiño JL, Smith CM, Gates RD (2015) Depth specialization in mesophotic corals (Leptoseris spp.) and associated algal symbionts in Hawai’i. R Soc Open Sci 2:140351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poupin J (1996) Crustacea Decapoda of French Polynesia (Astacidea, Palinuridea, Anomura, Brachyura). Atoll Res Bull 442:1–114

    Google Scholar 

  • Pyle RL (2000) Assessing undiscovered fish biodiversity on deep coral reefs using advanced self-contained diving technology. Mar Technol Soc J 34:82–91

    Article  Google Scholar 

  • Pyle RL, Earle JL, Greene BD (2008) Five new species of the damselfish genus Chromis (Perciformes: Labroidei: Pomacentridae) from deep coral reefs in the tropical western Pacific. Zootaxa 1671:3–31

    Google Scholar 

  • R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rezak R, Bright TJ, McGrail DW (1985) Reefs and banks of the Northwestern Gulf of Mexico: their geological, biological, and physical dynamics. Wiley, New York

    Google Scholar 

  • Rathbun MJ (1906) The brachyura and macrura of the Hawaiian Islands. Bulletin of the United States Fish Commission 23:827–930

    Google Scholar 

  • Roberts CM, McClean CJ, Veron JE, Hawkins JP, Allen GR, McAllister DE, Mittermeier CG, Schueler FW, Spalding M, Wells F, Vynne C, Werner TB (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284

    Article  CAS  PubMed  Google Scholar 

  • Rooney J, Donham E, Montgomery A, Spalding H, Parrish F, Boland R, Fenner D, Gove J, Vetter O (2010) Mesophotic coral ecosystems in the Hawaiian Archipelago. Coral Reefs 29:361–367

    Article  Google Scholar 

  • Small A, Adey A, Spoon D (1998) Are current estimates of coral reef biodiversity too low? The view through the window of a microcosm. Atoll Res Bull 458:1–20

    Article  Google Scholar 

  • Wagner D, Kosaki RK, Spalding HL, Whitton RK, Pyle RL, Sherwood AR, Tsuda RT, Calcinai B (2014) Mesophotic surveys of the flora and fauna at Johnston Atoll, Central Pacific Ocean. Mar Biodivers Rec 7:e68

    Article  Google Scholar 

  • Wainwright PC, Bellwood DR (2002) Ecomorphology of feeding in coral reef fishes. In: Sale PF (ed) coral reef fishes. Dynamics and diversity in a complex ecosystem. Academic Press, San Diego, pp 33–55

    Chapter  Google Scholar 

  • Walther BA, Moore JL (2005) The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 28:815–829

    Article  Google Scholar 

  • Wellington GM (1982) Depth zonation of corals in the Gulf of Panama: control and facilitation by resident reef fishes. Ecol Monogr 3:224–241

    Google Scholar 

  • White KN, Ohara T, Fujii T, Kawamura I, Mizuyama M, Montenegro J, Shikiba H, Naruse T, McClelland T, Denis V, Reimer JD (2013) Typhoon damage on a shallow mesophotic reef in Okinawa, Japan. PeerJ 1:e151

    Article  PubMed Central  PubMed  Google Scholar 

  • Willis TJ, Anderson MJ (2003) Structure of cryptic reef fish assemblages: relationships with habitat characteristics and predator density. Mar Ecol Prog Ser 257:209–221

    Article  Google Scholar 

  • Yarnall JL (1969) Aspects of the behavior of Octopus cyanea Gray, 1849. Anim Behav 17:747–754

    Article  Google Scholar 

  • Ziegler AC (2002) Hawaiian natural history, ecology, and evolution. University of Hawai‘i Press, Mānoa

    Google Scholar 

Download references

Acknowledgments

This work was funded through a combination of grants including NSF OCE 12-60169, NSF GRFP DGE-1329626, the Jessie D. Kay Fellowship, the Seaver Institute, a UH Mānoa Arts and Humanities Grant, and the Carol Ann & Myron K. Hayashida Scholarship. We thank NOAA Coral Reef Ecosystem Division and K. Reardon for generous assistance with the shallow ARMS sites and crab identifications and the UH Mānoa Dive Safety Office, D. Pence, K. Stender, J. Jones, and C.J. Bradley for installation and retrieval of the mesophotic ARMS. We thank the ToBo laboratory members, particularly M. Iacchei, C. Ka‘apu-Lyons, and Z. Hee, for discussion, support, and their efforts in the disassembly and sorting of ARMS samples on retrieval. We also thank M. Donahue, R. Coleman, and I. Knapp for their assistance with the analyses and writing. Special thanks are due to B. Bowen & M. Donahue for their service as committee members and their valuable feedback on the manuscript. This is HIMB Contribution #1640 and SOEST #9545.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaleonani K. C. Hurley.

Additional information

Communicated by Biology Editor Dr. Mark J. A. Vermeij

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3424 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hurley, K.K.C., Timmers, M.A., Godwin, L.S. et al. An assessment of shallow and mesophotic reef brachyuran crab assemblages on the south shore of O‘ahu, Hawai‘i. Coral Reefs 35, 103–112 (2016). https://doi.org/10.1007/s00338-015-1382-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-015-1382-z

Keywords

Navigation