Skip to main content
Log in

Mitochondrial terminal alternative oxidase and its enhancement by thermal stress in the coral symbiont Symbiodinium

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

A terminal electron acceptor alternative to mitochondrial cytochrome c oxidase (COX), mitochondrial alternative oxidase (AOX), is ubiquitous in higher plants and represented in nearly every algal taxon but is poorly documented in dinoflagellates. AOX competes for electrons with the conventional COX and has been hypothesized to function as a means of reducing oxidative stress in mitochondria, as well as a potential mechanism for ameliorating thermal and other physiological stressors. Here, the presence of an active AOX in cultured Symbiodinium was assayed by the response of oxygen consumption to the AOX inhibitor salicylhydroxamic acid (SHAM) and the COX inhibitor cyanide (CN). CN-insensitive, SHAM-sensitive oxygen consumption was found to account for a large portion (26 %) of Symbiodinium dark respiration and is consistent with high levels of AOX activity. This experimental evidence of the existence of a previously unreported terminal oxidase was further corroborated by analysis of publicly available Symbiodinium transcriptome data. The potential for enhanced AOX expression to play a compensatory role in mediating thermal stress was supported by inhibitor assays of cultured Symbiodinium at low (18 °C), moderate (26 °C), and high (32 °C) temperature conditions. Maximum capacity of the putative AOX pathway as a proportion of total dark oxygen consumption was found to increase from 26 % at 26 °C to 45 % and 53 % at 18 °C and 32 °C, respectively, when cells were acclimated to the treatment temperatures. Cells assayed at 18 and 32 °C without acclimation exhibited either the same or lower AOX capacity as controls, suggesting that the AOX protein is upregulated under temperature stress. The physiological implications for the presence of AOX in the coral/algal symbiosis and its potential role in response to many forms of biotic and abiotic stress, particularly oxidative stress, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Albury MS, Elliott C, Moore AL (2010) Ubiquinol-binding site in the alternative oxidase: mutagenesis reveals features important for substrate binding and inhibition. Biochim Biophys Acta 1797:1933–1939

    Article  CAS  PubMed  Google Scholar 

  • Annis ER, Cook CB (2002) Alkaline phosphatase activity in symbiotic dinoflagellates (zooxanthellae) as a biological indicator of environmental phosphate exposure. Mar Ecol Prog Ser 245:11–20

    Article  CAS  Google Scholar 

  • Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci USA 105:17442–17446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Atteia A, van Lis R, van Hellemond JJ, Tielens AGM, Martin W, Henze K (2004) Identification of prokaryotic homologues indicates an endosymbiotic origin for the alternative oxidases of mitochondria (AOX) and chloroplasts (PTOX). Gene 330:143–148

    Article  CAS  PubMed  Google Scholar 

  • Bahr JT, Bonner Jr WD (1973) Cyanide-insensitive respiration II. Control of the alternate pathway. J Biol Chem 248:3446–3450

    Google Scholar 

  • Bayer T, Aranda M, Sunagawa S, Yum LK, Desalvo MK, Lindquist E, Coffroth MA, Voolstra CR, Medina M (2012) Symbiodinium transcriptomes: genome insights into the dinoflagellate symbionts of reef-building corals. PloS One 7(4):e35269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beckmann K, Messinger J, Badger MR, Wydrzynski T, Hillier W (2009) On-line mass spectrometry: membrane inlet sampling. Photosynth Res 102:511–522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Butterfield ER, Howe CJ, Nisbet RER (2013) An analysis of dinoflagellate metabolism using EST data. Protist 164:218–236

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri M, Ott RD, Hill GC (2006) Trypanosome alternative oxidase: from molecule to function. Trends Parasit 22:484–491

    Article  CAS  Google Scholar 

  • Cheeseman JM (2007) Hydrogen peroxide and plant stress: A challenging relationship. Plant Stress 1:4–15

    Google Scholar 

  • Colombo-Pallotta MF, Rodríguez-Román A, Iglesias-Prieto R (2010) Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol. Coral Reefs 29:899–907

    Article  Google Scholar 

  • Cournac L, Latouche G, Cerovic Z, Redding K, Peltier G, Ravenel J (2002) In vivo interactions between photosynthesis, mitorespiration, and chlororespiration in Chlamydomonas reinhardtii. Plant Physiol 129:1921–1928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cvetkovska M, Vanlerberghe GC (2012) Alternative oxidase modulates leaf mitochondrial concentrations of superoxide and nitric oxide. New Phytol 195:32–39

    Article  CAS  PubMed  Google Scholar 

  • Day DA, Krab K, Lambers H, Moore AL, Siedow JN, Wagner AM, Wiskich JT (1996) The cyanide-resistant oxidase: To inhibit or not to inhibit, that is the question. Plant Physiol 110:1–2

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dunn SR, Pernice M, Green K, Hoegh-Guldberg O, Dove SG (2012) Thermal stress promotes host mitochondrial degradation in symbiotic cnidarians: are the batteries of the reef going to run out? PLoS One 7(7):e39024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eriksen NT, Lewitus AJ (1999) Cyanide-resistant respiration in diverse marine phytoplankton. Evidence for the widespread occurrence of the alternative oxidase. Aquat Microb Ecol 17:145–152

    Article  Google Scholar 

  • Finnegan PM, Soole KL, Umbach AL (2004) Alternative mitochondrial electron transport proteins in higher plants. In: Day DA, Millar H, Whelan J (eds) Plant mitochondria: from genome to function. Kluwer Academic Publishers, Dordrecht, pp 163–230

    Chapter  Google Scholar 

  • Finnegan PM, Umbach AL, Wilce JA (2003) Prokaryotic origins for the mitochondrial alternative oxidase and plastid terminal oxidase nuclear genes. FEBS Lett 555:425–430

    Article  CAS  PubMed  Google Scholar 

  • Fiorani F, Umbach AL, Siedow JN (2005) The alternative oxidase of plant mitochondria is involved in the acclimation of shoot growth at low temperature. A study of Arabidopsis AOX1a transgenic plants. Plant Physiol 139:1795–1805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Godinot C, Grover R, Allemand D, Ferrier-Pagès C (2011) High phosphate uptake requirements of the scleractinian coral Stylophora pistillata. J Exp Biol 214:2749–2754

    Article  CAS  PubMed  Google Scholar 

  • Godinot C, Ferrier-Pagès C, Sikorski S, Grover R (2013) Alkaline phosphatase activity of reef-building corals. Limnol Oceanogr 58:227–234

    Article  CAS  Google Scholar 

  • Hawkins TD, Davy SK (2013) Nitric oxide and coral bleaching: is peroxynitrite generation required for symbiosis collapse? J Exp Biol 216:3185–3188

    Article  CAS  PubMed  Google Scholar 

  • Henry MF, Hamaide-Deplus MC, Nyns EJ (1974) Cyanide-insensitive respiration of Candida lipolytica. Antonie Van Leeuwenhoek 40:79–91

    Article  CAS  PubMed  Google Scholar 

  • Jackson AE, Miller DJ, Yellowlees D (1989) Phosphorus metabolism in the coral-zooxanthellae symbiosis: Characterization and possible roles of two acid phosphatases in the algal symbiont Symbiodinium sp. Proc R Soc Lond B Biol Sci 238:193–202

    Article  CAS  Google Scholar 

  • Jokiel PL (2011) The reef coral two compartment proton flux model: A new approach relating tissue-level physiological processes to gross corallum morphology. J Exp Mar Bio Ecol 409:1–12

    Article  CAS  Google Scholar 

  • Kemp DW, Oakley CA, Thornhill DJ, Newcomb LA, Schmidt GW, Fitt WK (2011) Catastrophic mortality on inshore coral reefs of the Florida Keys due to severe low-temperature stress. Glob Chang Biol 17:3468–3477

    Article  Google Scholar 

  • Kleypas JA, McManus JW, Menez LAB (1999) Environmental limits to coral reef development: Where do we draw the line? Am Zool 39:146–159

    Google Scholar 

  • Knutson RM (1974) Heat production and temperature regulation in eastern skunk cabbage. Science 186:746–747

    Article  CAS  PubMed  Google Scholar 

  • Kühl M, Cohen Y, Dalsgaard T, Jergensenl BB, Revsbech NP (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied pH and light with microsensors for O2, pH and light. Mar Ecol Prog Ser 117:159–172

    Article  Google Scholar 

  • Lamarck JB (1778) Flore Francaise. L’Imprimerie Royale, Paris

  • Lennon AM, Neuenschwander UH, Ribas-Carbo M, Giles L, Ryals JA, Siedow JN (1997) The effects of salicylic acid and tobacco mosaic virus infection on the alternative oxidase of tobacco. Plant Physiol 115:783–791

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lesser MP (1996) Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol Oceanogr 41:271–283

    Article  CAS  Google Scholar 

  • Lesser MP (1997) Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16:187–192

    Article  Google Scholar 

  • Luz B, Barkan E, Sagi Y, Yacobi YZ (2002) Evaluation of community respiratory mechanisms with oxygen isotopes: A case study in Lake Kinneret. Limnol Oceanogr 47:33–42

    Article  CAS  Google Scholar 

  • Maxwell DP, Wang Y, McIntosh L (1999) The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci USA 96:8271–8276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McDonald AE (2008) Alternative oxidase: an inter-kingdom perspective on the function and regulation of this broadly distributed “cyanide-resistant” terminal oxidase. Funct Plant Biol 35:535

    Article  CAS  Google Scholar 

  • McDonald AE, Vanlerberghe GC (2006) Origins, evolutionary history, and taxonomic distribution of alternative oxidase and plastoquinol terminal oxidase. Comp Biochem Physiol Part D Genomics Proteomics 1:357–364

    Google Scholar 

  • McDonald AE, Sieger SM, Vanlerberghe GC (2002) Methods and approaches to study plant mitochondrial alternative oxidase. Physiol Biochem Zool 116:135–143

    Google Scholar 

  • McDonald AE, Vanlerberghe GC, Staples JF (2009) Alternative oxidase in animals : unique characteristics and taxonomic distribution. J Exp Biol 212:2627–2634

    Article  CAS  PubMed  Google Scholar 

  • Meeuse B (1975) Thermogenic respiration in Aroids. Annu Rev Plant Physiol 26:117–126

    Article  CAS  Google Scholar 

  • Millenaar FF, Benschop JJ, Wagner AM, Lambers H (1998) The role of the alternative oxidase in stabilizing the in vivo reduction state of the ubiquinone pool and the activation state of the alternative oxidase. Plant Physiol 118:599–607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Møller IM, Berczi A, Van Der Plas LHW, Lambers H (1988) Measurement of the activity and capacity of the alternative pathway in intact plant tissues: Identification of problems and possible solutions. Physiol Plant 72:642–649

    Article  Google Scholar 

  • Møller IM (2001) Plant mitochondria and oxidative stress: Electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  PubMed  Google Scholar 

  • Moore AL, Siedow JN (1991) The regulation and nature of the cyanide-resistant alternative oxidase of plant mitochondria. Biochim Biophys Acta 1059:121–140

    Article  CAS  PubMed  Google Scholar 

  • Morel FMM, Rueter JG, Anderson DM, Guillard RRL (1979) Aquil: A chemically defined phytoplankton culture medium for trace metal studies. J Phycol 15:135–141

    Article  CAS  Google Scholar 

  • Muscatine L, Porter JW (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. BioScience 27:454–460

    Article  Google Scholar 

  • Odum HT, Odum EP (1955) Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecol Monogr 25:291

    Article  Google Scholar 

  • Parsons HL, Yip JY, Vanlerberghe GC (1999) Increased respiratory restriction during phosphate-limited growth in transgenic tobacco cells lacking alternative oxidase. Plant Physiol 121:1309–1320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pilcher J, Weatherall M, Shirtcliffe P, Bellomo R, Young P, Beasley R (2012) The effect of hyperoxia following cardiac arrest - A systematic review and meta-analysis of animal trials. Resuscitation 83:417–422

    Article  PubMed  Google Scholar 

  • Porter JW, Muscatine L, Dubinsky Z, Falkowski PG (1984) Primary production and photoadaptation in light- and shade-adapted colonies of the symbiotic coral, Stylophora pistillata. Proc R Soc Lond B Biol Sci 222:161–180

    Article  Google Scholar 

  • Rasmusson AG, Møller IM, Palmer JM (1990) Component of the alternative oxidase localized to the matrix surface of the inner membrane of plant mitochondria. FEBS Lett 259:311–314

    Article  CAS  Google Scholar 

  • Richier S, Furla P, Plantivaux A, Merle P-L, Allemand D (2005) Symbiosis-induced adaptation to oxidative stress. J Exp Biol 208:277–285

    Article  PubMed  Google Scholar 

  • Robinson SA, Ribas-Carbo M, Yakir D, Giles L, Reuveni Y, Berry JA (1995) Beyond SHAM and cyanide: Opportunities for studying the alternative oxidase in plant respiration using oxygen isotope discrimination. Aust J Plant Physiol 22:487–496

    Article  CAS  Google Scholar 

  • Roth MS, Goericke R, Deheyn DD (2012) Cold induces acute stress but heat is ultimately more deleterious for the reef-building coral Acropora yongei. Sci Rep 2:240

    Article  PubMed Central  PubMed  Google Scholar 

  • Rychter AM, Mikulska M (1990) The relationship between phosphate status and cyanide-resistant respiration in bean roots. Physiol Plant 79:663–667

    Article  CAS  PubMed  Google Scholar 

  • Shashar N, Cohen Y, Loya Y (1993) Extreme diel fluctuations of oxygen in diffusive boundary layers surrounding stony corals. Biol Bull 185:455–461

    Article  Google Scholar 

  • Suggett DJ, Warner ME, Smith DJ, Davey P, Hennige S, Baker NR (2008) Photosynthesis and production of hydrogen peroxide by Symbiodinium (Pyrrhophyta) phylotypes with different thermal tolerances. J Phycol 44:948–956

    Article  CAS  Google Scholar 

  • Thornhill DJ, Kemp DW, Bruns BU, Fitt WK, Schmidt GW (2008) Correspondence between cold tolerance and temperate biogeography in a western Atlantic Symbiodinium (Dinophyta) lineage. J Phycol 44:1126–1135

    Article  CAS  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Toai TT, Bolles CS (1991) Postanoxic injury in soybean (Glycine max) seedlings. Plant Physiol 97:588–592

    Article  Google Scholar 

  • Vanlerberghe GC, McIntosh L (1992) Lower growth temperature increases alternative pathway capacity and alternative oxidase protein in tobacco. Plant Physiol 100:115–119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe CK, Hachiya T, Terashima I, Noguchi K (2008) The lack of alternative oxidase at low temperature leads to a disruption of the balance in carbon and nitrogen metabolism, and to an up-regulation of antioxidant defence systems in Arabidopsis thaliana leaves. Plant Cell Environ 31:1190–1202

    Article  CAS  PubMed  Google Scholar 

  • Weis VM (2008) Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211:3059–3066

    Article  CAS  PubMed  Google Scholar 

  • Yellowlees D, Rees TAV, Leggat W (2008) Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ 31:679–694

    Article  CAS  PubMed  Google Scholar 

  • Zahl P, McLaughlin J (1957) Isolation and cultivation of zooxanthellae. Nature 180:199–200

    Article  Google Scholar 

  • Zhang L, Oh Y, Li H, Baldwin IT, Galis I (2012) Alternative oxidase in resistance to biotic stresses: Nicotiana attenuata AOX contributes to resistance to a pathogen and a piercing-sucking insect but not Manduca sexta larvae. Plant Physiol 160:1453–1467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Xi D, Wang J, Zhu D, Guo X (2009) Functional analysis reveals effects of tobacco alternative oxidase gene (NtAOX1a) on regulation of defence responses against abiotic and biotic stress. Biosci Rep 29:375–383

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was developed under STAR Fellowship Assistance Agreement No. FP91719701-0 (C.A.O.) awarded by the U.S. Environmental Protection Agency (EPA), and by a Grant from the National Science Foundation (NSF EF-1041034, B.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clinton A. Oakley.

Additional information

Communicated by Biology Editor Dr. Ruth Gates

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oakley, C.A., Hopkinson, B.M. & Schmidt, G.W. Mitochondrial terminal alternative oxidase and its enhancement by thermal stress in the coral symbiont Symbiodinium . Coral Reefs 33, 543–552 (2014). https://doi.org/10.1007/s00338-014-1147-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-014-1147-0

Keywords

Navigation