Skip to main content
Log in

Hölder Continuity for the Fokas–Olver–Rosenau–Qiao Equation

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

It has been shown that the Cauchy problem for the Fokas–Olver–Rosenau–Qiao equation is well-posed for initial data \(u_0\in H^s\), \(s>5/2\), with its data-to-solution map \(u_0\mapsto u\) being continuous but not uniformly continuous. This work further investigates the continuity properties of the solution map and shows that it is Hölder continuous in the \(H^r\) topology when \(0\le r<s\). The Hölder exponent is given explicitly and depends on both \(s\) and \(r\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Cao, C., Holm, D., Titi, E.: Traveling wave solutions for a class of one-dimensional nonlinear shallow water wave models. J. Dyn. Differ. Equ. 16(1), 167–178 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Chen, R.M., Liu, Y., Zhang, P.: The Hölder continuity of the solution map to the \(b\)-family equation in weak topology. Math. Ann. 357, 1245–1289 (2013)

  • Constantin, A.: The trajectories of particles in Stokes waves. Invent. Math. 166, 523–535 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Constantin, A., Escher, J.: Particle trajectories in solitary water waves. Bull. Am. Math. Soc. 44, 423–431 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Constantin, A., Escher, J.: Well-posedness, global existence and blowup phenomena for a periodic quasi-linear hyperbolic equation. Commun. Pure Appl. Math. 51(5), 475–504 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 192, 165–186 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Constantin, A., Strauss, W.: Stability of the Camassa–Holm solitons. J. Nonlinear Sci. 12, 415–422 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Degasperis, A., Holm, D., Hone, A.: A new integral equation with peakon solutions. Theor. Math. Phys. 133, 1463–1474 (2002)

    Article  MathSciNet  Google Scholar 

  • Fokas, A.: On a class of physically important integrable equations. Phys. D 87(1–4), 145–150 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • Fokas, A., Fuchssteiner, B.: On the structure of symplectic operators and hereditary symmetries. Lett. Nuovo Cimento (2) 28(8), 299–303 (1980)

  • Fuchssteiner, B.: Some tricks from the symmetry toolbox for nonlinear equations: generalisations of the Camassa–Holm equation. Phys. D 95, 229–243 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Gelfand, I., Dorfman, I.: Hamiltonian operators and algebraic structures associated with them. Funct. Anal. Appl. 13, 13–30 (1979)

    MathSciNet  Google Scholar 

  • Gui, G., Liu, Y., Olver, P., Qu, C.: Wave-breaking and peakons for a modified Camassa–Holm equation. Commun. Math. Phys. 319, 731–759 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • Himonas, A., Holliman, C.: On well-posedness of the Degasperis–Procesi equation. Discrete Contin. Dyn. Syst. 31(2), 469–488 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Himonas, A., Holliman, C.: The Cauchy problem for the Novikov equation. Nonlinearity 25, 449–479 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Himonas, A., Holmes, J.: Hölder continuity of the solution map for the Novikov equation. J. Math. Phys. 54, 061501 (2013)

    Article  MathSciNet  Google Scholar 

  • Himonas, A., Kenig, C.: Non-uniform dependence on initial data for the CH equation on the line. Differ. Integral Equ. 22(3–4), 20–224 (2009)

    MathSciNet  Google Scholar 

  • Himonas, A., Kenig, C., Misiołek, G.: Non-uniform dependence for the periodic CH equation. Commun. Partial Differ. Equ. 35(6), 1145–1162 (2010)

    Article  MATH  Google Scholar 

  • Himonas, A., Mantzavinos, D.: The Cauchy problem for the Fokas–Olver–Rosenau–Qiao equation. Nonlinear Anal. 95, 499–529 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  • Himonas, A., Misiołek, G.: The Cauchy problem for an integrable shallow water equation. Differ. Integral Equ. 14, 821–831 (2001)

    MATH  Google Scholar 

  • Himonas, A., Misiołek, G.: High-frequency smooth solutions and well-posedness of the Camassa–Holm equation. Int. Math. Res. Not. 51, 3135–3151 (2005)

    Article  Google Scholar 

  • Hone, A., Lundmark, H., Szmigielski, J.: Explicit multipeakon solutions of Novivov’s cubically nonlinear integrable Camassa–Holm type equation. Dyn. PDE 6(3), 253–289 (2009)

    MATH  MathSciNet  Google Scholar 

  • Lenells, J.: Traveling wave solutions of the Camassa–Holm equation. J. Differ. Equ. 217(2), 393–430 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Lenells, J.: Stability of periodic peakons. Int. Math. Res. Not. 10, 485–499 (2004)

  • Li, Y., Olver, P.: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Equ. 162, 27–63 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Mikhailov, A., Novikov, V.: Perturbative symmetry approach. J. Phys. A Math. Gen. 35, 4775–4790 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Novikov, V.: Generalizations of the Camassa–Holm type equation. J. Phys. A Math. Theor. 42(34), 342002 (2009)

  • Olver, P., Rosenau, P.: Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. E 53(2), 1900 (1996)

  • Qiao, Z.: A new integrable equation with cuspons and W/M-shape-peaks solitons. J. Math. Phys. 47(11), 112701 (2006)

  • Rodriguez-Blanco, G.: On the Cauchy problem for the Camassa–Holm equation. Nonlinear Anal. 46, 309–327 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Taylor, M.: Commutator estimates. Proc. Am. Math. Soc. 131(5), 1501–1507 (2003)

    Article  MATH  Google Scholar 

  • Tiglay, F.: The periodic Cauchy problem for Novikov’s equation. Int. Math. Res. Not. 20, 4633–4648 (2011)

    MathSciNet  Google Scholar 

  • Toland, J.F.: Stokes waves. Topol. Methods Nonlinear Anal. 7, 1–48 (1996)

    MATH  MathSciNet  Google Scholar 

  • Vakhnenko, V.O., Parkes, E.J.: Periodic and solitary-wave solutions of the Degasperis–Procesi equation. Chaos Solitons Fractals 20, 1059–1073 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1981)

    Google Scholar 

  • Yin, Z.: On the Cauchy problem for an integrable equation with peakon solutions. Ill. J. Math. 47(3), 649–666 (2003)

    MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a grant from the Simons Foundation (246116 to Alex Himonas) and an AMS-Simons Travel Grant to Dionyssios Mantzavinos. The authors would like to thank the referees of the paper for constructive comments that led to its improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Alexandrou Himonas.

Additional information

Communicated by Darryl D. Holm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Himonas, A.A., Mantzavinos, D. Hölder Continuity for the Fokas–Olver–Rosenau–Qiao Equation. J Nonlinear Sci 24, 1105–1124 (2014). https://doi.org/10.1007/s00332-014-9212-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-014-9212-y

Keywords

Mathematics Subject Classification

Navigation