Skip to main content
Log in

Diagnostic performance of computed tomography angiography in the detection of coronary artery in-stent restenosis: evidence from an updated meta-analysis

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the performance of computed tomography angiography (CTA) ≥64 slices for detecting coronary in-stent restenosis (ISR) and determine the influence of separate characteristics on diagnostic accuracy.

Methods

We searched the PubMed, EMBASE and Cochrane databases for studies of CTA ≥64 slices in diagnosing ISR. We pooled data on bivariate modelling, and subgroup analysis was also performed.

Results

A total of 35 studies involving 4131 stents were included. The pooled positive likelihood ratio (LR+) and the negative likelihood ratio (LR) were 14.0 and 0.10, for CTA in diagnosis-significant ISR ≥50%. LR+ and LR were similar between CTA >64 slices versus 64 slices (both P > 0.99). LR (0.10) was good for ruling out suspected ISR for <3-mm diameter. Time between CTA and stent implantation >6 months did not affect the ability of CTA for the high LR+ (12.3) and the LR (0.10). Thick-strut stents ≥100 μm or bifurcation stenting demonstrated inferior accuracy, which was unfavourable for stent imaging.

Conclusions

With the high LR+ and LR of CTA, patients with ISR may be appropriate for non-invasive angiographic follow-up. However, CTA imaging seems unsuitable for patients with characteristics unfavourable for stent imaging, such as thick-strut stents or bifurcation stenting.

Key points

CTA may provide accurate information on characteristics of in-stent restenosis lesions.

Using CTA, ISR patients may be appropriate for non-invasive angiographic follow-up.

Stent diameter and the number of slices do not influence CTA.

CTA seems unsuitable for patients with thick-strut stents or bifurcation stenting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CHD:

Coronary heart disease

CTA:

Computed tomography angiography

ICA:

Invasive coronary angiography

ISR:

In-stent restenosis

PCI:

Percutaneous coronary intervention

References

  1. GBD 2013 Mortality and Causes of Death Collaborators (2015) Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385:117–171

    Article  Google Scholar 

  2. Siontis GC, Stefanini GG, Mavridis D, Siontis KC, Alfonso F et al (2015) Percutaneous coronary interventional strategies for treatment of in-stent restenosis: a network meta-analysis. Lancet 386:655–664

    Article  PubMed  Google Scholar 

  3. James SK, Stenestrand U, Lindback J, Carlsson J, Schersten F et al (2009) Long-term safety and efficacy of drug-eluting versus bare-metal stents in Sweden. N Engl J Med 360:1933–1945

    Article  CAS  PubMed  Google Scholar 

  4. Sandfort V, Lima JA, Bluemke DA (2015) Noninvasive Imaging of Atherosclerotic Plaque Progression: Status of Coronary Computed Tomography Angiography. Circ Cardiovasc Imaging 8:e3316

    Article  Google Scholar 

  5. Sato A, Aonuma K (2015) Role of cardiac multidetector computed tomography beyond coronary angiography. Circ J 79:712–720

    Article  PubMed  Google Scholar 

  6. Andreini D, Pontone G, Mushtaq S, Pepi M, Bartorelli AL (2010) Multidetector computed tomography coronary angiography for the assessment of coronary in-stent restenosis. Am J Cardiol 105:645–655

    Article  PubMed  Google Scholar 

  7. Douglas PS, Hoffmann U, Patel MR, Mark DB, Al-Khalidi HR et al (2015) Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med 372:1291–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. SCOT-HEART Investigation Group (2015) CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. Lancet 385:2383–2391

    Article  Google Scholar 

  9. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535

    Article  PubMed  PubMed Central  Google Scholar 

  10. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536

    Article  PubMed  Google Scholar 

  11. Deeks JJ, Altman DG (2004) Diagnostic tests 4: likelihood ratios. BMJ 329:168–169

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hamza TH, Arends LR, van Houwelingen HC, Stijnen T (2009) Multivariate random effects meta-analysis of diagnostic tests with multiple thresholds. BMC Med Res Methodol 9:73

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu LP, Cui LB, Zhang XX, Cao J, Chang N et al (2015) Diagnostic Performance of Diffusion-weighted Magnetic Resonance Imaging in Bone Malignancy: Evidence From a Meta-Analysis. Medicine (Baltimore) 94:e1998

    Article  Google Scholar 

  14. Deeks JJ, Macaskill P, Irwig L (2005) The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol 58:882–893

    Article  PubMed  Google Scholar 

  15. Wan YL, Tsay PK, Chen CC, Juan YH, Huang YC et al (2016) Coronary in-stent restenosis: predisposing clinical and stent-related factors, diagnostic performance and analyses of inaccuracies in 320-row computed tomography angiography. Int J Card Imaging 32:105–115

    Article  Google Scholar 

  16. Yue J, Chen J, Dou W, Hu Y, Li Q et al (2015) Comparative analysis between 64- and 320-slice spiral computed tomography in the display of coronary artery stents and diagnosis of in-stent restenosis. Exp Ther Med 10:1871–1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li M, Zhang J, Zhang Q, Pan J, Lu Z et al (2015) Coronary stent occlusion: reverse attenuation gradient sign observed at computed tomography angiography improves diagnostic performance. Eur Radiol 25:568–574

    Article  PubMed  Google Scholar 

  18. Yoshimura M, Nao T, Miura T, Okada M, Nakashima Y et al (2015) New quantitative method to diagnose coronary in-stent restenosis by 64-multislice computed tomography. J Cardiol 65:57–62

    Article  PubMed  Google Scholar 

  19. Wang J, Chen XM, Wang SH, Ye HH, Cui HB et al (2012) Diagnostic value of 320-slice computed tomography coronary angiography to assess in-stent restenosis. Zhonghua Xin Xue Guan Bing Za Zhi 40:487–491

    PubMed  Google Scholar 

  20. Zhang XH, Yang L, Wu J, Ju HY, Zhang F et al (2012) Diagnostic accuracy and its affecting factors of dual-source CT for assessment of coronary stents patency and in-stent restenosis. Chin Med J 125:1936–1940

    PubMed  Google Scholar 

  21. Pan J, Lu Z, Zhang J, Li M, Wei M (2013) Angiographic patterns of in-stent restenosis classified by computed tomography in patients with drug-eluting stents: correlation with invasive coronary angiography. Eur Radiol 23:101–107

    Article  PubMed  Google Scholar 

  22. Kwon W, Choi J, Kim JY, Kim SY, Yoon J et al (2012) In-stent area stenosis on 64-slice multi-detector computed tomography coronary angiography: optimal cutoff value for minimum lumen cross-sectional area of coronary stents compared with intravascular ultrasound. Int J Card Imaging 28:21–31

    Article  Google Scholar 

  23. Hang CL, Lee YW, Guo GB, Youssef AA, Yip HK et al (2013) Evaluation of coronary artery stent patency by using 64-slice multi-detector computed tomography and conventional coronary angiography: a comparison with intravascular ultrasonography. Int J Cardiol 166:90–95

    Article  PubMed  Google Scholar 

  24. Zhao J, Zheng LL, Yang Y (2011) Evaluation of coronary artery in-stent patency using 64-slice computed tomography. Coron Artery Dis 22:540–552

    Article  PubMed  Google Scholar 

  25. Yang ZY, Wang Q, Guo SX, Zhang Y, Fang XM et al (2011) Value of detecting in-stent restenosis by dual source coronary computed tomography coronary angiography. Zhonghua Xin Xue Guan Bing Za Zhi 39:49–52

    CAS  PubMed  Google Scholar 

  26. Andreini D, Pontone G, Bartorelli AL, Mushtaq S, Trabattoni D et al (2011) High diagnostic accuracy of prospective ECG-gating 64-slice computed tomography coronary angiography for the detection of in-stent restenosis: in-stent restenosis assessment by low-dose MDCT. Eur Radiol 21:1430–1438

    Article  PubMed  Google Scholar 

  27. Kong LY, Jin ZY, Zhang SY, Zhang ZH, Wang YN et al (2009) Assessment of coronary stents by 64-slice computed tomography: in-stent lumen visibility and patency. Chin Med Sci J 24:156–160

    Article  PubMed  Google Scholar 

  28. de Graaf FR, Schuijf JD, van Velzen JE, Boogers MJ, Kroft LJ et al (2010) Diagnostic accuracy of 320-row multidetector computed tomography coronary angiography to noninvasively assess in-stent restenosis. Investig Radiol 45:331–340

    Google Scholar 

  29. Chung SH, Kim YJ, Hur J, Lee HJ, Choe KO et al (2010) Evaluation of coronary artery in-stent restenosis by 64-section computed tomography: factors affecting assessment and accurate diagnosis. J Thorac Imaging 25:57–63

    Article  PubMed  Google Scholar 

  30. Abdelkarim MJ, Ahmadi N, Gopal A, Hamirani Y, Karlsberg RP et al (2010) Noninvasive quantitative evaluation of coronary artery stent patency using 64-row multidetector computed tomography. J Cardiovasc Comput Tomogr 4:29–37

    Article  PubMed  Google Scholar 

  31. Wykrzykowska JJ, Arbab-Zadeh A, Godoy G, Miller JM, Lin S et al (2010) Assessment of in-stent restenosis using 64-MDCT: analysis of the CORE-64 Multicenter International Trial. AJR Am J Roentgenol 194:85–92

    Article  PubMed  PubMed Central  Google Scholar 

  32. Martuscelli E, Romagnoli A, D'Eliseo A, Sperandio M, Di Luozzo M et al (2010) Evaluation of coronary in-stent restenosis by 64-slice computed tomography in patients with optimal heart rate control by systematic administration of beta-blocker drugs. J Cardiovasc Med (Hagerstown) 11:431–439

    Article  Google Scholar 

  33. Haraldsdottir S, Gudnason T, Sigurdsson AF, Gudjonsdottir J, Lehman SJ et al (2010) Diagnostic accuracy of 64-slice multidetector CT for detection of in-stent restenosis in an unselected, consecutive patient population. Eur J Radiol 76:188–194

    Article  PubMed  Google Scholar 

  34. Andreini D, Pontone G, Bartorelli AL, Trabattoni D, Mushtaq S et al (2009) Comparison of feasibility and diagnostic accuracy of 64-slice multidetector computed tomographic coronary angiography versus invasive coronary angiography versus intravascular ultrasound for evaluation of in-stent restenosis. Am J Cardiol 103:1349–1358

    Article  PubMed  Google Scholar 

  35. Pflederer T, Marwan M, Renz A, Bachmann S, Ropers D et al (2009) Noninvasive assessment of coronary in-stent restenosis by dual-source computed tomography. Am J Cardiol 103:812–817

    Article  PubMed  Google Scholar 

  36. Chen BX, Ma FY, Wen ZY, Luo W, Zhao XZ et al (2008) Diagnostic value of 128-slice CT coronary angiography in comparison with invasive coronary angiography. Zhonghua Xin Xue Guan Bing Za Zhi 36:223–228

    PubMed  Google Scholar 

  37. Manghat N, Van Lingen R, Hewson P, Syed F, Kakani N et al (2008) Usefulness of 64-detector row computed tomography for evaluation of intracoronary stents in symptomatic patients with suspected in-stent restenosis. Am J Cardiol 101:1567–1573

    Article  PubMed  Google Scholar 

  38. Carrabba N, Bamoshmoosh M, Carusi LM, Parodi G, Valenti R et al (2007) Usefulness of 64-slice multidetector computed tomography for detecting drug eluting in-stent restenosis. Am J Cardiol 100:1754–1758

    Article  PubMed  Google Scholar 

  39. Das KM, El-Menyar AA, Salam AM, Singh R, Dabdoob WA et al (2007) Contrast-enhanced 64-section coronary multidetector CT angiography versus conventional coronary angiography for stent assessment. Radiology 245:424–432

    Article  CAS  PubMed  Google Scholar 

  40. Schuijf JD, Pundziute G, Jukema JW, Lamb HJ, Tuinenburg JC et al (2007) Evaluation of patients with previous coronary stent implantation with 64-section CT. Radiology 245:416–423

    Article  PubMed  Google Scholar 

  41. Pugliese F, Weustink AC, Van Mieghem C, Alberghina F, Otsuka M et al (2008) Dual source coronary computed tomography angiography for detecting in-stent restenosis. Heart 94:848–854

    Article  CAS  PubMed  Google Scholar 

  42. Cademartiri F, Palumbo A, Maffei E, La Grutta L, Runza G et al (2007) Diagnostic accuracy of 64-slice CT in the assessment of coronary stents. Radiol Med 112:526–537

    Article  CAS  PubMed  Google Scholar 

  43. Cademartiri F, Schuijf JD, Pugliese F, Mollet NR, Jukema JW et al (2007) Usefulness of 64-slice multislice computed tomography coronary angiography to assess in-stent restenosis. J Am Coll Cardiol 49:2204–2210

    Article  PubMed  Google Scholar 

  44. Ehara M, Kawai M, Surmely JF, Matsubara T, Terashima M et al (2007) Diagnostic accuracy of coronary in-stent restenosis using 64-slice computed tomography: comparison with invasive coronary angiography. J Am Coll Cardiol 49:951–959

    Article  PubMed  Google Scholar 

  45. Oncel D, Oncel G, Karaca M (2007) Coronary stent patency and in-stent restenosis: determination with 64-section multidetector CT coronary angiography--initial experience. Radiology 242:403–409

    Article  PubMed  Google Scholar 

  46. Rist C, von Ziegler F, Nikolaou K, Kirchin MA, Wintersperger BJ et al (2006) Assessment of coronary artery stent patency and restenosis using 64-slice computed tomography. Acad Radiol 13:1465–1473

    Article  PubMed  Google Scholar 

  47. Rixe J, Achenbach S, Ropers D, Baum U, Kuettner A et al (2006) Assessment of coronary artery stent restenosis by 64-slice multi-detector computed tomography. Eur Heart J 27:2567–2572

    Article  PubMed  Google Scholar 

  48. Van Mieghem CA, Cademartiri F, Mollet NR, Malagutti P, Valgimigli M et al (2006) Multislice spiral computed tomography for the evaluation of stent patency after left main coronary artery stenting: a comparison with conventional coronary angiography and intravascular ultrasound. Circulation 114:645–653

    Article  PubMed  Google Scholar 

  49. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JR et al (2014) 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 63:2438–2488

    Article  PubMed  Google Scholar 

  50. Kashiwagi M, Tanaka A, Shimada K, Kitabata H, Komukai K et al (2013) Distribution, frequency and clinical implications of napkin-ring sign assessed by multidetector computed tomography. J Cardiol 61:399–403

    Article  PubMed  Google Scholar 

  51. Carrabba N, Schuijf JD, de Graaf FR, Parodi G, Maffei E et al (2010) Diagnostic accuracy of 64-slice computed tomography coronary angiography for the detection of in-stent restenosis: a meta-analysis. J Nucl Cardiol 17:470–478

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kumbhani DJ, Ingelmo CP, Schoenhagen P, Curtin RJ, Flamm SD et al (2009) Meta-analysis of diagnostic efficacy of 64-slice computed tomography in the evaluation of coronary in-stent restenosis. Am J Cardiol 103:1675–1681

    Article  PubMed  Google Scholar 

  53. Vanhoenacker PK, Decramer I, Bladt O, Sarno G, Van Hul E et al (2008) Multidetector computed tomography angiography for assessment of in-stent restenosis: meta-analysis of diagnostic performance. BMC Med Imaging 8:14

    Article  PubMed  PubMed Central  Google Scholar 

  54. Abdulla J, Abildstrom SZ, Gotzsche O, Christensen E, Kober L et al (2007) 64-multislice detector computed tomography coronary angiography as potential alternative to conventional coronary angiography: a systematic review and meta-analysis. Eur Heart J 28:3042–3050

    Article  PubMed  Google Scholar 

  55. Hamon M, Champ-Rigot L, Morello R, Riddell JW, Hamon M (2008) Diagnostic accuracy of in-stent coronary restenosis detection with multislice spiral computed tomography: a meta-analysis. Eur Radiol 18:217–225

    Article  PubMed  Google Scholar 

  56. Garg P, Underwood SR, Senior R, Greenwood JP, Plein S (2016) Noninvasive cardiac imaging in suspected acute coronary syndrome. Nat Rev Cardiol 13:266–275

    Article  PubMed  Google Scholar 

  57. Willemink MJ, de Jong PA, Leiner T (2013) Iterative reconstruction techniques for computed tomography Part 1: technical principles. Eur Radiol 6:1623–1631

    Article  Google Scholar 

  58. Stehli J, Fuchs TA, Bull S, Clerc OF, Possner M et al (2014) Accuracy of coronary CT angiography using a submillisievert fraction of radiation exposure: comparison with invasive coronary angiography. J Am Coll Cardiol 64:772–780

    Article  PubMed  Google Scholar 

  59. Beister M, Kolditz D, Kalender WA (2012) Iterative reconstruction methods in X-ray CT. Phys Med 28:94–108

  60. Leipsic J, Labounty TM, Heilbron B, Min JK, Mancini GB et al (2010) Adaptive statistical iterative reconstruction: assessment of image noise and image quality in coronary CT angiography. AJR Am J Roentgenol 195(3):649–654

    Article  PubMed  Google Scholar 

  61. Mueck FG, Körner M, Scherr MK, Geyer LL, Deak Z et al (2012) Upgrade to iterative image reconstruction (IR) in abdominal MDCT imaging: a clinical study for detailed parameter optimization beyond vendor recommendations using the adaptive statistical iterative reconstruction environment (ASIR). Röfo 184:229–238

    CAS  PubMed  Google Scholar 

  62. Renker M, Ramachandra A, Schoepf UJ, Raupach R, Apfaltrer P et al (2011) Iterative image reconstruction techniques: Applications for cardiac CT. J Cardiovasc Comput Tomogr 5:225–230

    Article  PubMed  Google Scholar 

  63. Ebersberger U, Tricarico F, Schoepf UJ, Blanke P, Spears JR et al (2013) CT evaluation of coronary artery stents with iterative image reconstruction: improvements in image quality and potential for radiation dose reduction. Eur Radiol 23:125–132

    Article  PubMed  Google Scholar 

  64. Eisentopf J, Achenbach S, Ulzheimer S, Layritz C, Wuest W et al (2013) Low-dose dual-source CT angiography with iterative reconstruction for coronary artery stent evaluation. JACC Cardiovasc Imaging 6:458–465

    Article  PubMed  Google Scholar 

  65. Gebhard C, Fiechter M, Fuchs TA, Stehli J, Müller E et al (2013) Coronary artery stents: influence of adaptive statistical iterative reconstruction on image quality using 64-HDCT. Eur Heart J Cardiovasc Imaging 14:969–977

    Article  PubMed  Google Scholar 

  66. Geyer LL, Schoepf UJ, Meinel FG, Nance JW, Bastarrika G et al (2015) State of the Art: Iterative CT Reconstruction Techniques. Radiology 276:339–357

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from Science Foundation of Health and Family Planning Commission of Zhejiang Province (2015KYB273)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-fei Hu.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Tao Dai.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

The author Tao Dai has significant statistical expertise in diagnostic meta-analysis.

Informed consent

All analyses were based on previous published studies; thus, no ethical approval and patient consent are required.

Ethical approval

Institutional review board approval was not required because all analyses were based on previous published studies; thus, no ethical approval and patient consent are required.

Methodology

This is a diagnostic meta-analysis performed at one medical institution.

Electronic supplementary material

Figure S1

(DOCX 183 kb)

Table S1

(DOCX 21 kb)

Table S2

(DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, T., Wang, Jr. & Hu, Pf. Diagnostic performance of computed tomography angiography in the detection of coronary artery in-stent restenosis: evidence from an updated meta-analysis. Eur Radiol 28, 1373–1382 (2018). https://doi.org/10.1007/s00330-017-5097-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-017-5097-0

Keywords

Navigation