Skip to main content

Advertisement

Log in

Evaluation of breast cancer using intravoxel incoherent motion (IVIM) histogram analysis: comparison with malignant status, histological subtype, and molecular prognostic factors

  • Breast
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Purpose

To examine heterogeneous breast cancer through intravoxel incoherent motion (IVIM) histogram analysis.

Materials and methods

This HIPAA-compliant, IRB-approved retrospective study included 62 patients (age 48.44 ± 11.14 years, 50 malignant lesions and 12 benign) who underwent contrast-enhanced 3 T breast MRI and diffusion-weighted imaging. Apparent diffusion coefficient (ADC) and IVIM biomarkers of tissue diffusivity (Dt), perfusion fraction (fp), and pseudo-diffusivity (Dp) were calculated using voxel-based analysis for the whole lesion volume. Histogram analysis was performed to quantify tumour heterogeneity. Comparisons were made using Mann–Whitney tests between benign/malignant status, histological subtype, and molecular prognostic factor status while Spearman’s rank correlation was used to characterize the association between imaging biomarkers and prognostic factor expression.

Results

The average values of the ADC and IVIM biomarkers, Dt and fp, showed significant differences between benign and malignant lesions. Additional significant differences were found in the histogram parameters among tumour subtypes and molecular prognostic factor status. IVIM histogram metrics, particularly fp and Dp, showed significant correlation with hormonal factor expression.

Conclusion

Advanced diffusion imaging biomarkers show relationships with molecular prognostic factors and breast cancer malignancy. This analysis reveals novel diagnostic metrics that may explain some of the observed variability in treatment response among breast cancer patients.

Key Points

Novel IVIM biomarkers characterize heterogeneous breast cancer.

Histogram analysis enables quantification of tumour heterogeneity.

IVIM biomarkers show relationships with breast cancer malignancy and molecular prognostic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501:328–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Durrett R, Foo J, Leder K, Mayberry J, Michor F (2011) Intratumor heterogeneity in evolutionary models of tumor progression. Genetics 188:461–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fisher R, Pusztai L, Swanton C (2013) Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer 108:479–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Polyak K (2011) Heterogeneity in breast cancer. J Clin Invest 121:3786–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jeh SK, Kim SH, Kim HS et al (2011) Correlation of the apparent diffusion coefficient value and dynamic magnetic resonance imaging findings with prognostic factors in invasive ductal carcinoma. J Magn Reson Imaging 33:102–109

    Article  PubMed  Google Scholar 

  6. Choi SY, Chang YW, Park HJ, Kim HJ, Hong SS, Seo DY (2012) Correlation of the apparent diffusion coefficiency values on diffusion-weighted imaging with prognostic factors for breast cancer. Br J Radiol 85:e474–e479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Iima M, Le Bihan D, Okumura R et al (2011) Apparent diffusion coefficient as an MR imaging biomarker of low-risk ductal carcinoma in situ: a pilot study. Radiology 260:364–372

    Article  PubMed  Google Scholar 

  8. Kamitani T, Matsuo Y, Yabuuchi H et al (2013) Correlations between apparent diffusion coefficient values and prognostic factors of breast cancer. Magn Reson Med Sci MRMS Off J Jpn Soc Magn Reson Med 12:193–199

    Google Scholar 

  9. Basser PJ (1995) Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 8:333–344

    Article  CAS  PubMed  Google Scholar 

  10. Padhani AR, Liu G, Koh DM et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sinha S, Lucas-Quesada FA, Sinha U, DeBruhl N, Bassett LW (2002) In vivo diffusion-weighted MRI of the breast: potential for lesion characterization. J Magn Reson Imaging 15:693–704

    Article  PubMed  Google Scholar 

  12. Rahbar H, Partridge SC, Demartini WB et al (2012) In vivo assessment of ductal carcinoma in situ grade: a model incorporating dynamic contrast-enhanced and diffusion-weighted breast MR imaging parameters. Radiology 263:374–382

    Article  PubMed  PubMed Central  Google Scholar 

  13. Partridge SC, Rahbar H, Murthy R et al (2011) Improved diagnostic accuracy of breast MRI through combined apparent diffusion coefficients and dynamic contrast-enhanced kinetics. Magn Reson Med 65:1759–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim SH, Cha ES, Kim HS et al (2009) Diffusion-weighted imaging of breast cancer: correlation of the apparent diffusion coefficient value with prognostic factors. J Magn Reson Imaging 30:615–620

    Article  PubMed  Google Scholar 

  15. Iima M, Yano K, Kataoka M et al (2015) Quantitative non-gaussian diffusion and intravoxel incoherent motion magnetic resonance imaging: differentiation of malignant and benign breast lesions. Investig Radiol 50:205–211

    Article  Google Scholar 

  16. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505

    Article  PubMed  Google Scholar 

  17. Luciani A, Vignaud A, Cavet M et al (2008) Liver cirrhosis: intravoxel incoherent motion MR imaging--pilot study. Radiology 249:891–899

    Article  PubMed  Google Scholar 

  18. Lemke A, Laun FB, Klauss M et al (2009) Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple b-values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters. Investig Radiol 44:769–775

    Article  Google Scholar 

  19. Gaing B, Sigmund EE, Huang WC et al (2015) Subtype differentiation of renal tumors using voxel-based histogram analysis of intravoxel incoherent motion parameters. Investig Radiol 50:144–152

    Article  Google Scholar 

  20. Lu Y, Jansen JF, Mazaheri Y, Stambuk HE, Koutcher JA, Shukla-Dave A (2012) Extension of the intravoxel incoherent motion model to non-gaussian diffusion in head and neck cancer. J Magn Reson Imaging 36:1088–1096

    Article  PubMed  PubMed Central  Google Scholar 

  21. Thoeny HC, Zumstein D, Simon-Zoula S et al (2006) Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology 241:812–821

    Article  PubMed  Google Scholar 

  22. Song YS, Park CM, Lee SM et al (2014) Reproducibility of histogram and texture parameters derived from intravoxel incoherent motion diffusion-weighted MRI of FN13762 rat breast Carcinomas. Anticancer Res 34:2135–2144

    PubMed  Google Scholar 

  23. Kim S, Decarlo L, Cho GY et al (2012) Interstitial fluid pressure correlates with intravoxel incoherent motion imaging metrics in a mouse mammary carcinoma model. NMR Biomed 25:787–794

    Article  PubMed  Google Scholar 

  24. Suo S, Lin N, Wang H et al (2014) Intravoxel incoherent motion diffusion-weighted MR imaging of breast cancer at 3.0 tesla: comparison of different curve-fitting methods. J Magn Reson Imaging. doi:10.1002/jmri.24799:n/a-n/a

    PubMed  Google Scholar 

  25. Cho GY, Moy L, Zhang JL et al (2014) Comparison of fitting methods and b-value sampling strategies for intravoxel incoherent motion in breast cancer. Magn Reson Med. doi:10.1002/mrm.25484

    Google Scholar 

  26. Bokacheva L, Kaplan JB, Giri DD et al (2014) Intravoxel incoherent motion diffusion-weighted MRI at 3.0 T differentiates malignant breast lesions from benign lesions and breast parenchyma. J Magn Reson Imaging 40:813–823

    Article  PubMed  Google Scholar 

  27. Sigmund EE, Cho GY, Kim S et al (2011) Intravoxel incoherent motion imaging of tumor microenvironment in locally advanced breast cancer. Magn Reson Med 65:1437–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu C, Liang C, Liu Z, Zhang S, Huang B (2013) Intravoxel incoherent motion (IVIM) in evaluation of breast lesions: comparison with conventional DWI. Eur J Radiol 82:e782–e789

    Article  PubMed  Google Scholar 

  29. Wiederer J, Pazahr S, Leo C, Nanz D, Boss A (2014) Quantitative breast MRI: 2D histogram analysis of diffusion tensor parameters in normal tissue. MAGMA 27:185–193

    Article  CAS  PubMed  Google Scholar 

  30. Chandarana H, Rosenkrantz AB, Mussi TC et al (2012) Histogram analysis of whole-lesion enhancement in differentiating clear cell from papillary subtype of renal cell cancer. Radiology 265:790–798

    Article  PubMed  Google Scholar 

  31. Lutz K, Wiestler B, Graf M et al (2014) Infiltrative patterns of glioblastoma: identification of tumor progress using apparent diffusion coefficient histograms. J Magn Reson Imaging 39:1096–1103

    Article  PubMed  Google Scholar 

  32. Emblem KE, Scheie D, Due-Tonnessen P et al (2008) Histogram analysis of MR imaging–derived cerebral blood volume maps: combined glioma grading and identification of low-grade oligodendroglial subtypes. Am J Neuroradiol 29:1664–1670

    Article  CAS  PubMed  Google Scholar 

  33. Baltzer PA, Renz DM, Herrmann KH et al (2009) Diffusion-weighted imaging (DWI) in MR mammography (MRM): clinical comparison of echo planar imaging (EPI) and half-Fourier single-shot turbo spin echo (HASTE) diffusion techniques. Eur Radiol 19:1612–1620

    Article  CAS  PubMed  Google Scholar 

  34. Kinoshita T, Yashiro N, Ihara N, Funatu H, Fukuma E, Narita M (2002) Diffusion-weighted half-Fourier single-shot turbo spin echo imaging in breast tumors: differentiation of invasive ductal carcinoma from fibroadenoma. J Comput Assist Tomogr 26:1042–1046

    Article  PubMed  Google Scholar 

  35. ACR (2003) Breast imaging reporting and data system (BI-RADS). American College of Radiology, Reston, VA

    Google Scholar 

  36. Sharma U, Danishad KKA, Seenu V, Jagannathan NR (2009) Longitudinal study of the assessment by MRI and diffusion-weighted imaging of tumor response in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy. NMR Biomed 22:104–113

    Article  PubMed  Google Scholar 

  37. Wirestam R, Borg M, Brockstedt S, Lindgren A, Holtas S, Stahlberg F (2001) Perfusion-related parameters in intravoxel incoherent motion MR imaging compared with CBV and CBF measured by dynamic susceptibility-contrast MR technique. Acta Radiol 42:123–128

    Article  CAS  PubMed  Google Scholar 

  38. Moteki T, Horikoshi H (2006) Evaluation of hepatic lesions and hepatic parenchyma using diffusion-weighted echo-planar MR with three values of gradient b-factor. J Magn Reson Imaging 24:637–645

    Article  PubMed  Google Scholar 

  39. Callot V, Bennett E, Decking UK, Balaban RS, Wen H (2003) In vivo study of microcirculation in canine myocardium using the IVIM method. Magn Reson Med 50:531–540

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yao L, Sinha U (2000) Imaging the microcirculatory proton fraction of muscle with diffusion-weighted echo-planar imaging. Acad Radiol 7:27–32

    Article  CAS  PubMed  Google Scholar 

  41. Pekar J, Moonen CT, van Zijl PC (1992) On the precision of diffusion/perfusion imaging by gradient sensitization. Magn Reson Med 23:122–129

    Article  CAS  PubMed  Google Scholar 

  42. Guiu B, Petit JM, Capitan V et al (2012) Intravoxel incoherent motion diffusion–weighted Imaging in nonalcoholic fatty liver disease: a 3.0–T MR study. Radiology 265:96–103

    Article  PubMed  Google Scholar 

  43. Sumi M, Nakamura T (2013) Head and neck tumors: assessment of perfusion–related parameters and diffusion coefficients based on the intravoxel incoherent motion model. AJNR Am J Neuroradiol 34:410–416

    Article  CAS  PubMed  Google Scholar 

  44. Schwarz G (1978) Estimating dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  45. Adams S, Chakravarthy AB, Donach M et al (2010) Preoperative concurrent paclitaxel-radiation in locally advanced breast cancer: pathologic response correlates with five-year overall survival. Breast Cancer Res Treat 124:723–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Prat A, Perou CM (2011) Deconstructing the molecular portraits of breast cancer. Mol Oncol 5:5–23

    Article  CAS  PubMed  Google Scholar 

  47. Yue W, Wang JP, Li Y et al (2005) Tamoxifen versus aromatase inhibitors for breast cancer prevention. Clin Cancer Res 11:925s–930s

    CAS  PubMed  Google Scholar 

  48. Pequeux C, Raymond-Letron I, Blacher S et al (2012) Stromal estrogen receptor-alpha promotes tumor growth by normalizing an increased angiogenesis. Cancer Res 72:3010–3019

    Article  CAS  PubMed  Google Scholar 

  49. Hyder SM, Murthy L, Stancel GM (1998) Progestin regulation of vascular endothelial growth factor in human breast cancer cells. Cancer Res 58:392–395

    CAS  PubMed  Google Scholar 

  50. Stendahl M, Ryden L, Nordenskjold B, Jonsson PE, Landberg G, Jirstrom K (2006) High progesterone receptor expression correlates to the effect of adjuvant tamoxifen in premenopausal breast cancer patients. Clin Cancer Res 12:4614–4618

    Article  CAS  PubMed  Google Scholar 

  51. Zhang JL, Sigmund EE, Rusinek H et al (2012) Optimization of b-value sampling for diffusion-weighted imaging of the kidney. Magn Reson Med 67:89–97

    Article  PubMed  Google Scholar 

  52. Dyvorne HA, Galea N, Nevers T et al (2013) Diffusion-weighted imaging of the liver with multiple b-values: effect of diffusion gradient polarity and breathing acquisition on image quality and intravoxel incoherent motion parameters--a pilot study. Radiology 266:920–929

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nilsen LB, Fangberget A, Geier O, Seierstad T (2013) Quantitative analysis of diffusion-weighted magnetic resonance imaging in malignant breast lesions using different b-value combinations. Eur Radiol 23:1027–1033

    Article  PubMed  Google Scholar 

  54. Neil JJ, Bretthorst GL (1993) On the use of Bayesian probability theory for analysis of exponential decay data: an example taken from intravoxel incoherent motion experiments. Magn Reson Med 29:642–647

    Article  CAS  PubMed  Google Scholar 

  55. Barbieri S, Donati OF, Froehlich JM, Thoeny HC (2015) Impact of the calculation algorithm on biexponential fitting of diffusion-weighted MRI in upper abdominal organs. Magn Reson Med. doi:10.1002/mrm.25765

    PubMed  Google Scholar 

  56. Orton MR, Collins DJ, Koh DM, Leach MO (2014) Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling. Magn Reson Med 71:411–420

    Article  PubMed  Google Scholar 

  57. Wurnig MC, Donati OF, Ulbrich E et al (2014) Systematic analysis of the intravoxel incoherent motion threshold separating perfusion and diffusion effects: proposal of a standardized algorithm. Magn Reson Med. doi:10.1002/mrm.25506

    PubMed  Google Scholar 

  58. Freiman M, Voss SD, Mulkern RV, Perez-Rossello JM, Callahan MJ, Warfield SK (2012) Reliable assessment of perfusivity and diffusivity from diffusion imaging of the body. Med Image Comput Comput Assist Interv 15:1–9

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Quentin M, Blondin D, Klasen J et al (2012) Comparison of different mathematical models of diffusion-weighted prostate MR imaging. Magn Reson Imaging 30:1468–1474

    Article  PubMed  Google Scholar 

  60. Veraart J, Rajan J, Peeters RR, Leemans A, Sunaert S, Sijbers J (2012) Comprehensive framework for accurate diffusion MRI parameter estimation. Magn Reson Med. doi:10.1002/mrm.24529:n/a-n/a

    Google Scholar 

  61. Freiman M, Voss SD, Mulkern RV, Perez-Rossello JM, Callahan MJ, Warfield SK (2012) In vivo assessment of optimal b-value range for perfusion-insensitive apparent diffusion coefficient imaging. Med Phys 39:4832–4839

    Article  PubMed  PubMed Central  Google Scholar 

  62. Freiman M, Perez-Rossello JM, Callahan MJ et al (2013) Reliable estimation of incoherent motion parametric maps from diffusion-weighted MRI using fusion bootstrap moves. Med Image Anal 17:325–336

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wu LM, Hu J, Xu JR (2012) MRI in residual tumor size measurement in patient with breast cancer receiving neoadjuvant chemotherapy calls for caution. Breast Cancer Res Treat 135:319–320

    Article  PubMed  Google Scholar 

  64. Prevos R, Smidt ML, Tjan-Heijnen VC et al (2012) Pre-treatment differences and early response monitoring of neoadjuvant chemotherapy in breast cancer patients using magnetic resonance imaging: a systematic review. Eur Radiol 22:2607–2616

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Eric E. Sigmund, Ph.D. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. One of the authors has significant statistical expertise (James S. Babb). Institutional review board approval was obtained. Written informed consent was waived by the institutional review board. Some study subjects or cohorts have been previously reported in

• Sigmund EE, Cho GY, Kim S et al (2011) Intravoxel incoherent motion imaging of tumour microenvironment in locally advanced breast cancer. Magn Reson Med 65:1437–1447

• Cho GY, Moy L, Kim SG, Klautau Leite AP, Baete SH, Babb JS, Sodickson DK, Sigmund EE (2015) Comparison of contrast enhancement and diffusion-weighted magnetic resonance imaging in healthy and cancerous breast tissue. Eur J Radiol 84(10):1888–93. doi: 10.1016/j.ejrad.2015.06.023. Epub 2015 Jul 2.

• Cho GY, Moy L, Zhang JL et al (2014) Comparison of fitting methods and b-value sampling strategies for intravoxel incoherent motion in breast cancer. Magn Reson Med. 10.1002/mrm.25484

Methodology: retrospective, diagnostic or prognostic study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gene Young Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, G.Y., Moy, L., Kim, S.G. et al. Evaluation of breast cancer using intravoxel incoherent motion (IVIM) histogram analysis: comparison with malignant status, histological subtype, and molecular prognostic factors. Eur Radiol 26, 2547–2558 (2016). https://doi.org/10.1007/s00330-015-4087-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-4087-3

Keywords

Navigation